Information-Theoretically Secure Key-Insulated Multireceiver Authentication Codes

OTakenobu Seito
Tadashi Aikawa
Junji Shikata
Tsutomu Matsumoto

Yokohama National University, Japan

- Introduction.
- Information-theoretically secure Key-Insulated Multireceiver Authentication Codes(KI-MRA).
 - Model.
 - Security Notions and Their formalization.
 - Lower Bounds.
 - Direct/Generic Constructions.
- **■** Conclusion.

When **long-term use** of computationally secure cryptographic techniques (e.g. public-key encryption, digital signatures) is considered, there are two problems:

I. Computationally secure schemes might not maintain sufficient long-term security because of recent rapid development of algorithms and computer technologies.

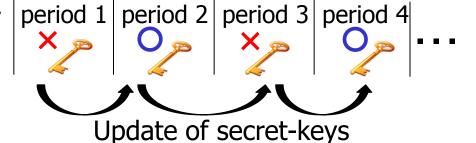
Solution: Information-Theoretically secure scheme

This scheme guarantees long-term security.

II. One of the most serious threats in cryptographic protocols is exposure of secret-keys (i.e. exposure of secret-keys leads to a total break of the system).

Solution: Key-Insulated Scheme [Dodis et al. 02, 03]

This scheme minimizes the risk of key-exposure.



Our research topic is "authentication/signature schemes which have both information-theoretic and key-insulated security".

Especially...

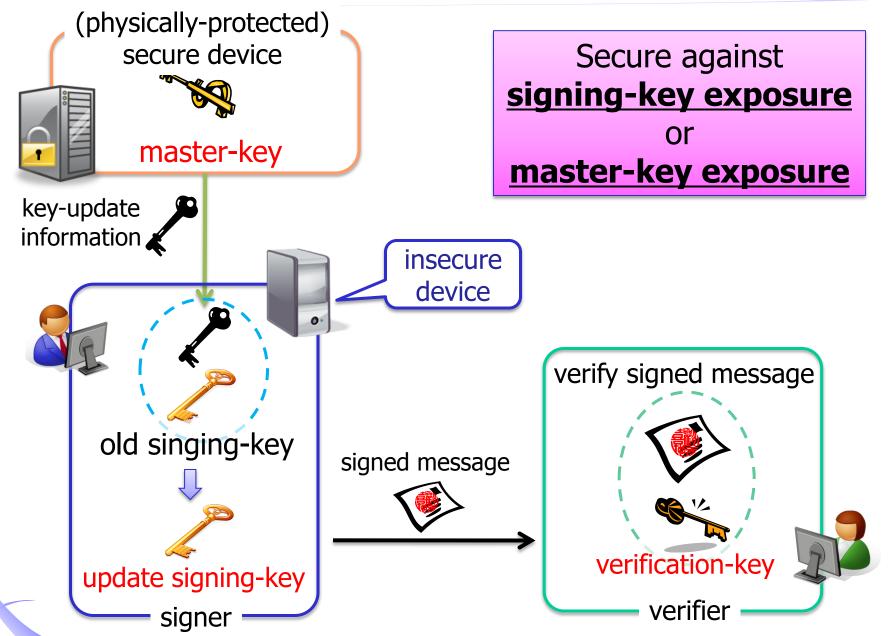
We propose

Information-Theoretically Secure Key-Insulated Multireceiver Authentication codes (KI-MRA).

Key-Insulated Security	Computational Security	Information-Theoretic Security
Confidentiality	[Dodis et al. 02]	[Hanaoka et al. 04]
Authenticity	[Dodis et al. 03]	Our Research

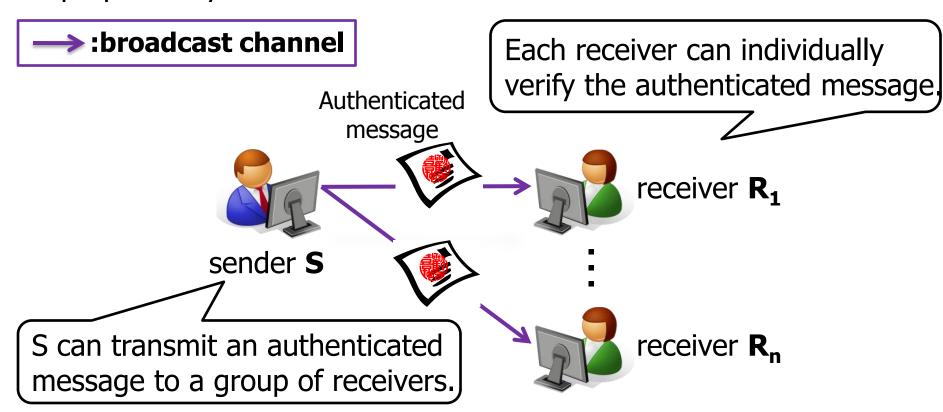
Fig. The area of our research.

Key-Insulated Signature Schemes[Dodis et al. 03]

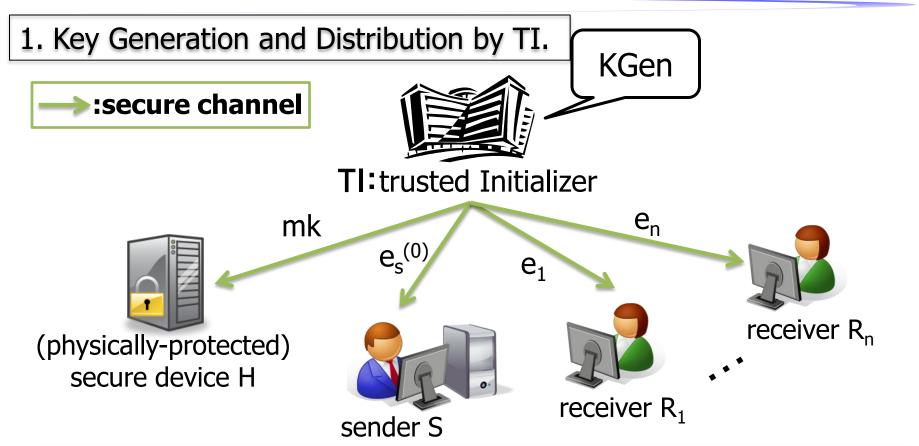


Multireceiver Authentication codes (MRA-codes)

■ One of the information-theoretically secure authentication schemes proposed by Desmedt et al. [Desmedt et al. 92].



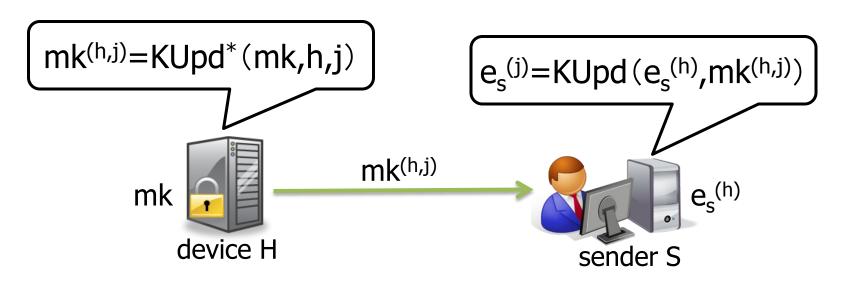
We focus on this scheme and propose **Key-Insulated Multireceiver Authentication codes (KI-MRA).**



Assumption: Lifetime of the system is divided into **N periods**.

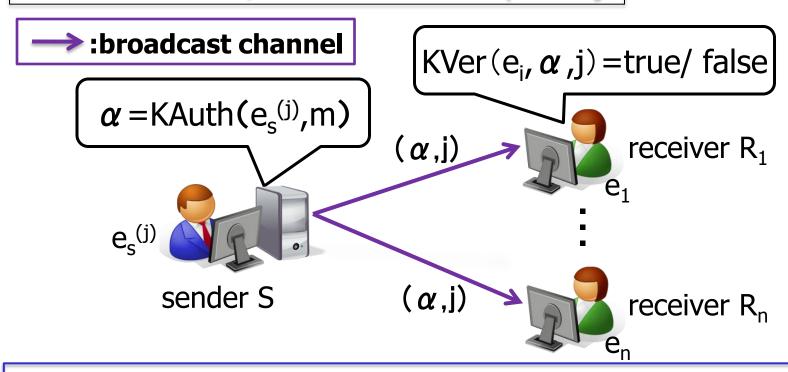
- KGen is a key generation algorithm.
- mk is a master-key.
- $e_s^{(0)}$ is an initial secret-key for the sender S.
- e_i is a secret-key for R_i(<u>It will not be updated at each period</u>).

2. Updating sender's secret-keys for a period j from a period h.



- KUpd* is a key-updating algorithm for the device H.
- Kupd is a key-updating algorithm for the sender S.
- $h \in \{0, 1, ..., N\}, j \in \{1, 2, ..., N\}$.
- mk^(h,j) is key-updating information.

3. Authentication / Verification at the period j.

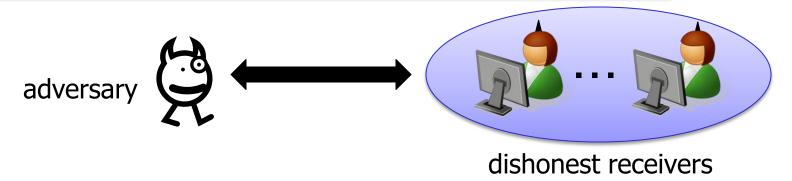


We consider the one-time model, in which the sender is allowed to generate and broadcast an authenticated message at most only once per period.

- KAuth is an authentication algorithm.
- KVer is a verification algorithm.
- · m is a message.
- α is an authenticated message.

KI-MRA -Attacking Model-

The adversary can corrupt at most ω dishonest receviers.



We consider the following two types of exposure:

Type A

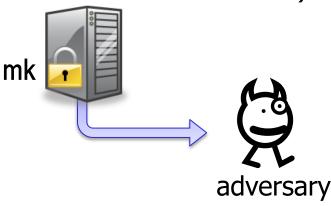
At most γ sender's secret-keys are exposed from the insecure device.

period1	period 2	• • •	period N
$e_s^{(1)}$	$e_s^{(2)}$		e _s (N)
		l	l I

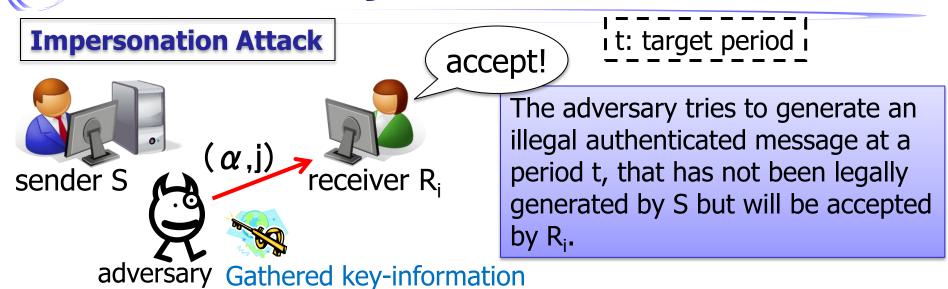
Type B

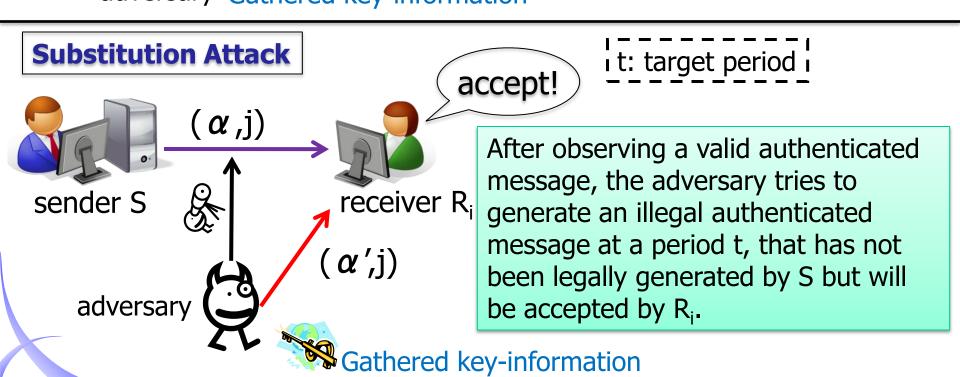
The master-key is exposed from the secure device.

(It means the device is robbed).



KI-MRA -Attacking Model-





KI-MRA -Security Notions-

Definition.

KI-MRA Π is called $(n,\omega;N, \gamma; \epsilon_A, \epsilon_B)$ -one-time secure if the following conditions are satisfied.

$$\max(P_{\Pi,IA}, P_{\Pi,SA}) \leq \epsilon_{A}, \max(P_{\Pi,IB}, P_{\Pi,SB}) \leq \epsilon_{B}$$

- n is the number of receivers.
- ω is the number of dishonest receivers.
- N is the totality of periods.
- γ is the number of period at which sender's secret-keys may be exposed.

	Impersonation Attack	Substitution Attack
Type A	$P_{\Pi,IA}$	$P_{\Pi,SA}$
Type B	$P_{\Pi,IB}$	$P_{\Pi,SB}$

Fig. The combination between attacks and key-exposure types.

KI-MRA -Lower Bounds-

Theorem.

Lower bounds of success probabilities of attacks $P_{\Pi,IA}$, $P_{\Pi,SA}$, $P_{\Pi,IB}$, $P_{\Pi,SB}$ are as follows.

$$P_{\Pi,I_A}(R_i,W,\Gamma,t) \geq 2^{-I(A^{(t)};E_i^{(t)}|E_W,E_\Gamma)}$$

$$P_{\Pi,S_A}(R_i,W,\Gamma,t) \ge 2^{-I(\tilde{A}^{(t)};E_i^{(t)}|E_W,E_\Gamma,A^{(t)})}$$

$$P_{\Pi,I_B}(R_i,W,t) \ge 2^{-I(A^{(t)};E_i^{(t)}|E_W,MK)}$$

$$P_{\Pi,S_B}(R_i,W,t) \ge 2^{-I(\tilde{A}^{(t)};E_i^{(t)}|E_W,MK,A^{(t)})}$$

W is a set of ω dishonest receivers.

 $R_i \notin W$ is a target verifier.

 Γ is a set of key-exposed period.

 $t \notin \Gamma$ is a period when attack will be done.

KI-MRA -Lower Bounds-

Theorem.

Let Π be an $(n,\omega;N,\gamma;1/q,1/q)$ -one-time secure KI-MRA. Then, we have the following lower bounds of memory sizes:

Sender's secret-keys at period j: $|\mathcal{E}_{S}^{(j)}| \geq q^{2(\omega+1)}$

Receiver R_i's secret-keys: $|\mathcal{E}_i| \ge q^{2(\gamma+1)}$

Master-keys: $|\mathcal{MK}| \ge q^{2\gamma(\omega+1)}$

Key-update information: $|\mathcal{I}^{(h,j)}| \geq q^{2(\omega+1)}$

Authenticated messages: $|\mathcal{R}^{(j)}| \ge 2^{H(M)} q^{\omega+1}$

($1 \le i \le n$, $0 \le \omega < n$, $0 \le \gamma < N$, $0 \le h \le N$, $1 \le j \le N$)

Our direct construction will meet all the above inequalities with equalities.

The above bounds are tight!

Note: The proposed lower bounds of KI-MRA are extension of those of MRA-codes[Safavi-Naini et al. 99].

In the case of $\gamma = 0$:

Sender's secret-keys at period j: $|\mathcal{E}_{S}| \ge q^{2(\omega+1)}$

Receiver R_i 's secret-keys: $|\mathcal{E}_i| \ge q^2$

Authenticated messages: $|\mathcal{A}| \ge 2^{H(M)} q^{\omega+1}$

($1 \le i \le n$, $0 \le \omega < n$, $0 \le h \le N$, $1 \le j \le N$)

 $(n,\omega;N,0;\epsilon_{\Delta},\epsilon_{B})$ -one-time secure KI-MRA = MRA-codes.

- Direct Construction -

A construction which uses polynomials over finite fields F_a (q: prime power).

This construction meets lower bounds with equalities ⇒It is optimal construction.

1. Key Generation and Distribution by TI.

The master-key for the device H

$$F(x,z) := \sum_{i=0}^{\omega} \sum_{k=0}^{1} a_{i,0,k} x^{i} z^{k}, \quad mk(x,y,z) := \sum_{i=0}^{\omega} \sum_{j=1}^{\gamma} \sum_{k=0}^{1} a_{i,j,k} x^{i} y^{j} z^{k}$$

$$(a_{i,j,k} \in F_{q})$$

The initial secret-key for sender

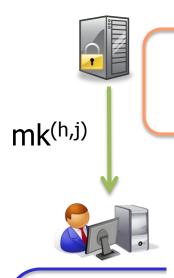
$$e_{S}^{(0)}(x, z) := F(x,z)$$

The receiver R_i's secret-key

$$e_i(y, z) := F(R_i,z) + mk(R_i,y,z)$$

 $(R_i \in F_a \setminus \{0\} : R_i \mathcal{O} ID)$

2. Updating sender's secret-keys for a period j from a period h.



The key-updating information

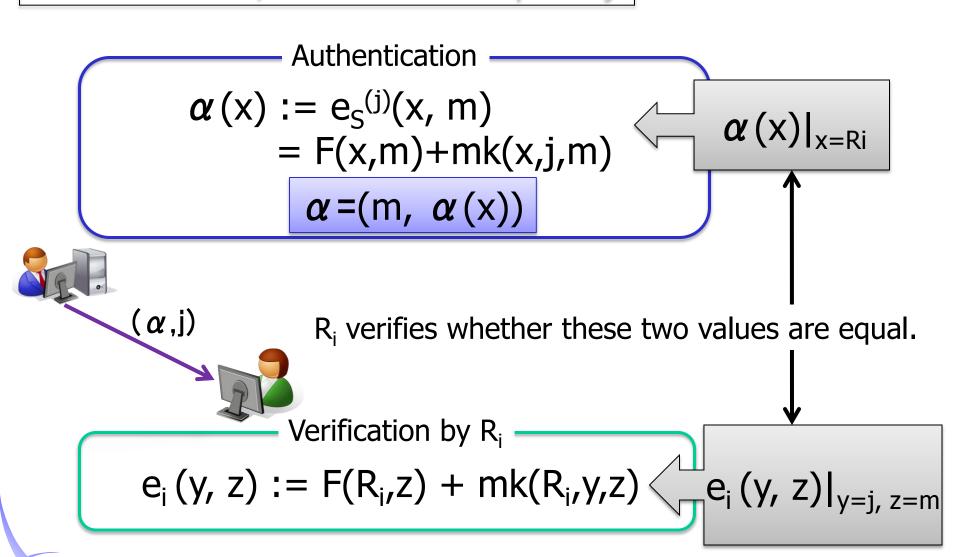
$$mk^{(h,j)}(x, z) := mk(x,j,z) - mk(x,h,z)$$

The sender's secret-key at the period j

$$e_{S}^{(j)}(x, z) := e_{S}^{(h)}(x, z) + mk^{(h,j)}(x, z)$$

= $F(x,z) + mk(x,h,z) + mk(x,j,z) - mk(x,h,z)$
= $F(x.z) + mk(x,j,z)$

3. Authentication / Verification at the period j.



Theorem.

The proposed construction is $(n,\omega;N, \gamma;1/q,1/q)$ -one-time secure, and optimal.

Memory sizes of secret-keys and authenticated messages

Sender's secret-keys at period j: $|\mathcal{E}_{S}^{(j)}| = q^{2(\omega+1)}$

Receiver R_i's secret-keys: $|\mathcal{E}_i| = q^{2(\gamma+1)}$

Master-keys: $|\mathcal{MK}| = q^{2\gamma(\omega+1)}$

Key-update information: $|\mathcal{I}^{(h,j)}| = q^{2(\omega+1)}$

Authenticated messages: $|\mathcal{R}^{(j)}| = 2^{H(M)} q^{\omega+1}$

- Generic Construction -

Merit: A **flexibility** in choosing system parameters.

Cover free family (CFF)[Erdos et al.85]

Definition.

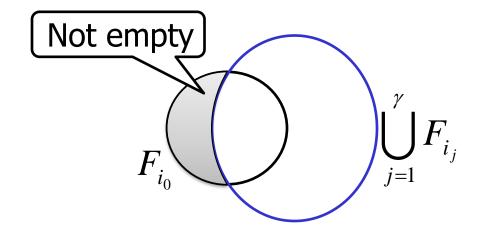
Let

- $\mathcal{L}=\{l_1, l_2, ..., l_d\}$ be a universal set.
- $\mathcal{F}=\{F_1, F_2, ..., F_N\}$ be a family of subsets of \mathcal{L} .

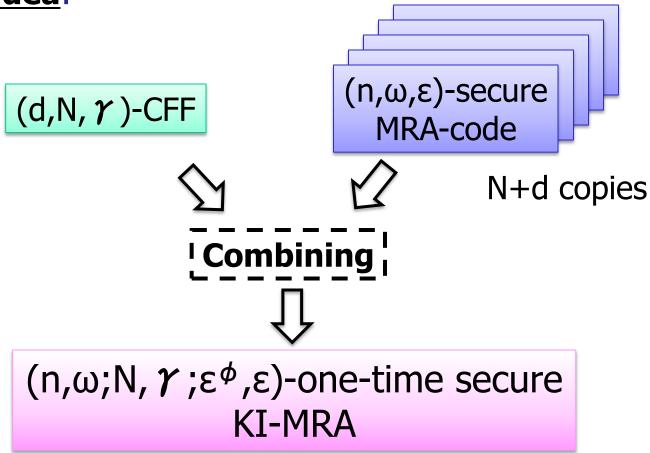
Then, we call it (d, N, γ)-CFF if

$$F_{i_0} \not\subset F_{i_1} \cup F_{i_2} \cup \ldots \cup F_{i_{\gamma}}$$

for all
$$F_{i_0}, F_{i_1}, F_{i_2}, \dots, F_{i_{\gamma}} \in \mathcal{F}(F_{i_j} \neq F_{i_k}, \text{if } j \neq k)$$



Basic idea:



[Note]

- n is the number of receivers
- ω is the number of dishonest receivers
- ε is a success probability of attacks

of the underlying MRA-code.

1. Key Generation and Distribution by TI.

$$(u_0^{(j)}, v_{1,0}^{(j)}, v_{2,0}^{(j)}, \dots, v_{n,0}^{(j)})$$
: the j-th output from MGen $(1 \le j \le N)$
 $(u_1^{(l_g)}, v_{1,1}^{(l_g)}, v_{2,1}^{(l_g)}, \dots, v_{n,1}^{(l_g)})$: the g-th output from MGen $(1 \le g \le d)$
 $(1 \le g \le d)$
 $(1 \le g \le d)$

The initial secret-key for the sender
$$e_S^{(0)} \coloneqq (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U^{(0)}) \quad (U^{(0)} = \phi)$$

The receiver
$$R_i$$
's secret-key
$$e_i := (v_{i,0}^{(1)}, v_{i,0}^{(2)}, \dots, v_{i,0}^{(N)}, v_{i,1}^{(l_1)}, v_{i,1}^{(l_2)}, \dots, v_{i,1}^{(l_d)})$$

The master-key
$$mk := (u_1^{(l_1)}, u_1^{(l_2)}, ..., u_1^{(l_d)})$$

- MGen: a key generation algorithm of MRA-code.
- $u_0^{(j)}$, $u_1^{(j)}$: a secret-key for sender.
- $v_{i,0}^{(j)}$, $v_{i,1}^{(j)}$: a secret-key for receiver.

Update

KI-MRA -Generic Construction-

2. Updating sender's secret-keys for a period j from a period h.

The key-updating information

$$mk^{(h,j)} := U^{(j)} (U^{(j)} := \{u_1^{(l)} | l \in F_j\})$$

$$F_j \iff \mathsf{period}\; \mathsf{j}$$

 $mk^{(h,j)}$

The sender's secret-key at the period j

$$e_S^{(j)} := (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U^{(j)})$$

exchange

$$e_S^{(h)} = (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U_0^{(h)})$$

The sender's secret-key at the period h

Security:

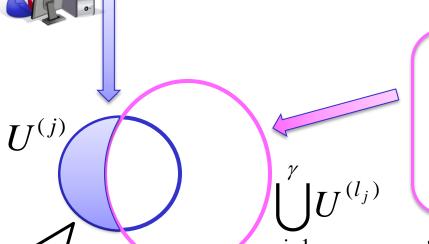
Not empty

$$U^{(j)} := \{ u_1^{(l)} \mid l \in F_j \}$$

The sender's secret-key at the period t

$$e_S^{(j)} := (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U^{(j)})$$

a set of sender's secret-keys corresponding to F_i.



r exposed secret-keys for the sender

$$e_S^{(l_1)} := (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U^{(l_1)})$$

$$e_S^{(l_\gamma)} := (u_0^{(1)}, u_0^{(2)}, \dots, u_0^{(N)}, U^{(l_\gamma)})$$

adversary

From the definition of CFF...

the adversary cannot obtain all information about the sender's secret-key at the target period t.

3. Authentication / Verification at the period j.

Authentication $\alpha \coloneqq (m, \delta_0^{(j)}, \delta_{i_1}^{(j)}, \delta_{i_2}^{(j)}, \dots, \delta_{i_{|F_j|}}^{(j)})$ $\begin{bmatrix} \delta_0^{(j)} \coloneqq \mathsf{MAuth}(u_0^{(j)}, m) \\ \delta_0^{(j)} \coloneqq \mathsf{MAuth}(u_1^{(i_g)}, m) \text{ for all } i_g \in F_j \end{bmatrix}$

$$\mathsf{MVer}(v_{i,0}^{(j)}, \delta_0^{(j)}) = true$$

Verification by R_i $\begin{bmatrix} \mathsf{MVer}(v_{i,0}^{(j)}, \delta_0^{(j)}) = true \\ \mathsf{MVer}(v_{i,1}^{(l_g)}, \delta_{l_g}^{(j)}) = true \end{bmatrix}$ $f(v_i) = true \text{ for all } l_g \in F_j$

- MAuth: an authentication algorithm of MRA-code.
- MVer: a verification algorithm of MRA-code.

Theorem.

The proposed construction is $(n,\omega;N, \gamma;\epsilon^{\phi},\epsilon)$ -one-time secure.

Here, $\phi := \min(|F_{i0} - \{F_{i1} \cup ... F_{i\gamma}\}|)$, where the minimum is taken over all $F_{i0}, F_{i1}, ..., F_{i\gamma} \in \mathcal{F}$.

We studied Information-Theoretically Secure Key-Insulated Multireceiver Authentication codes (**KI-MRA**).

Our Results

- Newly introduced the model of KI-MRA.
- Defined and formalized security notions of KI-MRA.
- Derived lower bounds of success probabilities of attacks and memory sizes required for a secure KI-MRA(<u>tight</u>).
- Proposed two constructions:
 - Direct Construction(<u>optimal</u>)
 - Generic Construction

Thank you!

Appendix: Memory sizes of Constructions

Memory sizes of the generic construction

Sender's secret-keys at period j:
$$|\mathcal{E}_S^{(j)}| = (N + |F_j|) |\mathcal{U}|$$

Receiver R_i's secret-keys: $|\mathcal{E}_i| = (N + d) |\mathcal{V}|$
Master-keys: $|\mathcal{MK}| = d |\mathcal{U}|$
Key-update information: $|\mathcal{I}^{(h,j)}| = |F_j| |\mathcal{U}|$
Authenticated messages: $|\mathcal{A}^{(j)}| = (|F_i| + 1) |\mathcal{D}|$

Appendix: Formalization of $P_{\pi,IA}$

For any set of colluder W, any set of key-exposure periods Γ , any targeted honest receiver $R_i \notin W$ and target period $t \notin \Gamma$, then

$$P_{\Pi,IA}(R_i,W,\Gamma,t) := \max_{e_W} \max_{e_\Gamma} \max_{(\alpha,t)} \Pr(KVer(e_i,\alpha,t) = true \mid e_W,e_\Gamma)$$

- e_w: a set of the colluders' secret-keys.
- e_{Γ} : a set of sender's secret-keys exposed such that $e_{s}^{(t)} \notin e_{\Gamma}$.
- (α ,t): an authenticated message.

Appendix: Formalization of $P_{\pi,SA}$

For any set of colluder W, any set of key-exposure periods Γ , any targeted honest receiver $R_i \notin W$ and target period $t \notin \Gamma$, then

$$P_{\Pi,SA}(R_i, W, \Gamma, t) := \max_{e_W} \max_{e_{\Gamma}} \max_{(\alpha',t)} \max_{(\alpha,t) \neq (\alpha',t)}$$

$$\Pr(KVer(e_i, \alpha, t) = true \mid e_W, e_{\Gamma}, (\alpha', t))$$

- e_w: a set of the colluders' secret-keys.
- e_{Γ} : a set of sender's secret-keys exposed such that $e_{s}^{(t)} \notin e_{\Gamma}$.
- (α',t) , (α,t) : an authenticated message.

Appendix: Formalization of $P_{\pi,lB}$

For any set of colluder W, any targeted honest receiver $R_i \notin W$ and target period $t \notin \Gamma$, then

$$P_{\Pi,IB}(R_i,W,t) := \max_{e_W} \max_{mk} \max_{(\alpha,t)} \Pr(KVer(e_i,\alpha,t) = true \mid e_W,mk)$$

- e_w: a set of the colluders' secret-keys.
- mk: an exposed master-key.
- (α ,t): an authenticated message.

Appendix: Formalization of $P_{\pi,SB}$

For any set of colluder W, any targeted honest receiver $R_i \notin W$ and target period $t \notin \Gamma$, then

$$P_{\Pi,SB}(R_i, W, t) := \max_{e_W} \max_{mk} \max_{(\alpha', t)} \max_{(\alpha, t) \neq (\alpha', t)}$$

$$\Pr(KVer(e_i, \alpha, t) = true \mid e_W, mk, (\alpha', t))$$

- e_w: a set of the colluders' secret-keys.
- mk: an exposed master-key.
- (α',t) , (α,t) : an authenticated message.