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1. INTRODUCTION

This talk is in the intersection of network security and cryptography.

After WWI, designers of networks wanted to guarantee reliability of

a network against an attacker that destroys t nodes.

The problem was then generalized to the case nodes, deny or

forward incorrect information (see Hadzilacos 1984 and Dolev

1982).

The issue became important to cryptography when the privacy

requirement was added (see Dolev-Dwork-Waarts-Yung, 1993).

Since then lots of papers in the area (see survey paper by

Desmedt, BT Tech. Journal, 2006) have appeared. There are
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several more recent papers, e.g., by Kurosawa-Suzuki (ICITS 2007)

and Kurosawa-Suzuki (Eurocrypt 2008).

Kurosawa-Suzuki (Eurocrypt 2008) have perfect reliability and

perfect privacy with optimal (order wise) transmission complexity.

Some definitions:
Communication Complexity: number of bits the sender sends to

communicate 1 bit plaintext.

Transmission Complexity: number of bits sender sends divided by

the length of the message.

One can wonder which of these two measures is the most

important.
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Google Search gives:

• Communication Complexity: 93,000 hits
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Google Search gives:

• Communication Complexity: 93,000 hits

• Transmission Complexity: 1,560 hits
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Google Search gives:

• Communication Complexity: 93,000 hits

• Transmission Complexity: 1,560 hits

But what about Google Scholar?

• Communication Complexity: 13,400 hits!

• Transmission Complexity: 190 hits

Why we agree with the majority:
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Why we agree with the majority:

• Perfectly Secure Message Transmission protocols are expensive.

They need a transmission complexity of at least 2t+ 1. So, they will

only be used in exceptional circumstances, such as if most public

key systems would be broken. So, the message sent will likely be

short as sending a new key for a conventional cryptographic

scheme. Afterwards, one switches to classical cryptography.

• Even if one would assume Perfectly Secure Message Transmission

(and its variants) be used in practice, the bound is meaningless in

practice. Indeed, to achieve this rate, messages are made artificially

long. However, in many applications, as ssh, packages are short!
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So, we are the first to focus on communication complexity.

Note: we use standard techniques as: secret sharing, interaction

and vertex disjoint paths, being:
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2. A CAMPAIGN FOR BETTER NOTATIONS

The classical notation is from Franklin and Wright and defines

(ε, δ)-security, as:

1. Let δ < 1
2. A message transmission protocol is δ-reliable if, with

probability at least 1 - δ, B terminates with MB = MA.

2. ε refers to the privacy that is achieved, see Franklin-Wright.

A protocol is (ε, δ)-secure if it is ε-private and δ-reliable. A message

transmission protocol is perfectly reliable if it is 0-reliable (similar for

privacy).

Note: strange notation, since, e.g., 0-reliable means no errors!
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However, standard!

Kurosawa-Suzuki introduced almost secure, meaning:

A (1-phase, n-channel) message transmission scheme is

(t, δ)-secure if the following conditions are satisfied

Privacy: The adversary learns no information on MA (better than

guessing).

General Reliability: The receiver outputs MB = MA or ⊥ (failure).

The receiver thus never outputs a wrong secret.

Failure: Pr(Receiver outputs ⊥) < δ.
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The two definitions cannot be compared!

So, we campaign to use (ε, δ, γ)-security, where

γ-availability: when with probability at least 1− γ, B accepts a

message, i.e. B rejects with probability γ.

δ-authenticity:

δ = P (MA 6= MB|ReceiverAccepts).

ε-privacy: as defined by Franklin-Wright.
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3. A FIRST 1-PHASE (0, 0, γ)-SECURE PROTOCOL

Denote MA the secret message A wants to transmit. Let n = 2t+ 1.

Step 1 The sender chooses shares (s1, . . . , sn) of MA from a

Shamir’s (t+ 1)-out-of-n secret sharing scheme.

Step 2 For each si, the sender chooses a random polynomial pi such

that pi(0) = si (degree at most t) and random ri,j.

Step 3 The sender transmits (e.g., for i = 2), as following
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The receiver executes the following:

Step 1 For all i: B checks the number of times pB
i (rB

i,j) = sB
i,j

(1 ≤ j ≤ n). If only t times or less, wire i is FAULTY.

Step 2 For all non-FAULTY wires i: B computes pB
i (0).

Step 3 B checks whether there exists a polynomial pB of degree at

most t such that for all non-FAULTY i: pB(xi) = pB
i (0), where

xi is public and comes from Shamir’s secret sharing.

If so, then accept MB = pB(0), else reject.

Theorem 1. This protocol achieves (0, 0, γ) security for

q ≥ ct(t+ 1) when t tends towards infinity and c an appropriate

constant (in function of γ).
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Proof: Privacy: trivial.

Authenticity: t+ 1 wires are honest, and so their wires will not be

declared non-faulty and so sA
i = pB

i (0). If for some i′, not declared

faulty, sA
i′ 6= pB

i′ (0), then B will reject.

Availability: Observe that a wire B declared non-FAULTY might be

dishonest, when the adversary is very lucky. The adversary could

modify:

• pi(x) into p′i(x), and

• ri,j and pi(ri,j) into r′i,j and p′i(r
′
i,j) for all j that are dishonest.

However, to be declared non-FAULTY, the adversary needs that
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pi(x′) = p′i(x
′) for at least one value x′ = ri,j where j is honest and

pi 6= p′i (indeed, otherwise the attack fails).

Let us call A the event that:

the adversary succeeds that pi(x′) = p′i(x
′) for at least one value

x′ = ri,j where j is honest.

and let us call B the event that pi 6= p′i. Since the adversary knows

both pi and p′i, he can check whether they are different or not. So,

the adversary will win with probability

prob(A | B) =
prob(A,B)
prob(B)

.
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Let us first analyze prob(A,B).

Since the degree of the polynomial is at most t, up to t values x

might exist such that pi(x′) = p′i(x
′). So, prob(A,B) =

1−prob(at least one honest share is the same)−prob(pi = p′i) ≤

1−
(

1− t

q

)t+1

−
(

1
q

)t+1

,

which is obviously less than

1−
(

1− t

q

)t+1

. (1)
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When q = ct(t+ 1), then (1) becomes

1−
(

1− 1
c(t+ 1)

)t+1

which is roughly 1− e−c−1
. So, prob(A,B) ≤ 1− e−c−1

.

Moreover, prob(B) ≥ 1−
(

t
q

)t+1

, which when q = ct(t+ 1) becomes

prob(B) ≥ 1−
(

1
c(t+1)

)t+1

≥ 1− 1/c, for t large enough. So,

prob(A | B) ≤ 1− e−c−1

(1− 1
c
)
.
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γ-Availability will definitely be achieved if

1− e−c−1
/(1− 1/c) < γ.

Note: above assumes the adversary only changes one pi into p′i.

However, the adversary controls t wires, so can change up to t.

One can proof that when q = O(t2), that the best strategy is to only

modify one pi (see final paper). 2

So, the communication complexity of this protocol is O(t2 log2 t).
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4. OLD PROTOCOLS IN NEW “BARRELS”
Desmedt-Wang Eurocrypt 2002 protocol:
A makes shares from the secret using a t+ 1-out-of-2t+ 1 perfect
secret sharing scheme. Then, for each i (1 ≤ i ≤ 2k+ 1), for each j:
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If |{CB
i,j : CB

i,j = auth(ShareB
i , keyB

i,j)}| ≥ t+ 1, then B accepts

ShareB
i . Then from accepted shares B reconstructs the secret.

Above predates the concept of “almost secure” message

transmission protocol.

Can trivially be modified into an (0, 0, γ)-secure one, as follows:

If from the accepted shares one can compute two possible

secrets, then the receiver rejects.

Above runs in polynomial time, while Kurosawa-Suzuki (ICITS

2007) requires exponential time.
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Theorem 2. When using an authenticitation scheme in which the

probability of a successful substitution is less or equal to 1/q, then

this protocol achieves (0, 0, γ) security for q ≥ ct(t+ 1) when t tends

towards infinity and c is appropriately chosen.

Proof: Privacy: as in Desmedt-Wang, i.e., trivial.

Authenticity: similar as in the proof of Theorem 1.

Availability: the attacker will on all t wires she controls modify the

shares, and make on these t wires consistent MACs. She needs at

least that at one other wire, one of these keys will lead to a correct

MAC. So, the probability is:

1− (1− 1
q
)t(t+1).
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Choosing q = ct(t+ 1), then we obtain results similar to these in

Theorem 1 2
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5. EFFICIENT PERFECTLY SECURE MESSAGE

TRANSMISSION

Step 1 The receiver does the following for i, j := 1, . . . , n:

1. The receiver selects random element ri.

2. The receiver constructs a (t+ 1)-out-of-n secret sharing scheme

of ri using the random polynomial pi of degree at most t to obtain

n shares (s1i, s2i,. . . , sni).

3. The receiver sends polynomial pi on wire wi and share sij is sent

on wire wj.

Step 2 The sender does the following

1. The sender constructs a (t+ 1)-out-of-n secret sharing scheme
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of MA to obtain n shares (m1,m2,. . . ,mn).

2. For i := 1, . . . , n the sender receives polynomial pi from wire wi.

The sender evaluates pi(0) as ri. The sender calculates the value

di := ri ⊕mi. These are termed correcting information.

3. For i := 1, . . . , n using the ith shares received from each wire,

error shares are identified. sij received from wire wj is an error

share if sij 6=pi(xj).

4. The tuple of all identified error shares, called esij, is sent to the

receiver via broadcast.

5. The correcting information - (d1, d2,. . . , dn), is sent to the receiver

via broadcast.
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Step 3 The receiver does the following:

1. The receiver makes the following checks to identify the set of

active wires of the first phase.

Case 1: If the value of error share esij is different to the

corresponding share sent out by the receiver in Phase 1 then

wire j is identified as a faulty wire.

Case 2: If the value of error share esij is equal to the

corresponding share sent out by the receiver in Phase 1 then

wire i is identified as a faulty wire.

The set of honest wires (indicated as HONEST ) is also

constructed.

2. Using HONEST the receiver computes shares of the secret
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message MA. This is done by computing mwi
:= rwi

⊕ dwi
where

wi ∈ HONEST .

3. Using the computed shares from the step above, the receiver

interpolates and obtains the secret message.

Theorem 3. The above protocol achieves perfectly secure

message transmission ((0, 0, 0)-security).

For the proof, see the proceedings.

The communication complexity is O(n3 log n).

However, using the technique of generalized broadcast, introduced

by Srinathan-Narayanan-Rangan (Crypto 2004), we can reduce the
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communication complexity to O(n2 log n).

For details: see the proceedings.
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6. CONCLUSIONS

We presented several protocols that require polynomial (in t)

computation complexity and communication complexity. Our

protocols require O(n2 log n) communication complexity.

It is trivial to show that one needs to send at least (roughly) n log2 n

bits. The log2 n, comes from the bounds on secret sharing schemes.

Open problems: are there protocols with an O(n log n)

communication complexity that achieve

• perfectly secure message transmission using 2 phases?

• (0, 0, γ)-secure message transmission using 1 phase?
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Note: the problem has been solved when requiring a 1 phase

(0, 0, 0)-secure message transmission protocol.

We expect to have a more detailed and corrected version of our

paper on the IACR e-Print Archive around July 1, 2010.
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