AFRICACRYPT 2010 STIAS Stellenbosch South Africa

SOME UNUSUAL CIPHERS: PROTEX AND KEELOQ

G J Kühn Ciphertec cc gjkuhn@global.co.za

Contents

- Protex: First electronic crypto device in designed in South Africa
- Keeloq: A simple but effective secure remote entry device

PROTEX CIPHER

A rotor-inspired electronic cipher device

Rotor Cryptographic Machines

- The Protex cipher was based on rotor machine prototypes, such as
 - Enigma
 - Tsec-KL/7
 - Typex

The Enigma machine was used commercially from the early 1920's, and was adopted by the militaries and governments of various countries.

Rotor Disk

P = Permutation embedded in rotor

S = Single step cyclic permutation

TSEC/KL-7 adopted by the US National Security Agency

Typex

- British cipher machine in use from 1937
- Based on the Enigma

Concatenation of r Rotors

$$P = S^{-i_1}P_1S^{i_1} \cdot S^{-i_2}P_2S^{i_2} \cdot \cdots \cdot S^{-i_r}P_rS^{i_r}$$

where

 P_1 , P_2 , ..., P_r are the rotor permutations

S is a 1-step rotation operation

 $\sigma = (i_1, i_2, ..., i_r)$ is the state of the machine

Reflection Disk

$$Q = S^{-i_1} P_1 S^{i_1} \cdot S^{-i_2} P_2 S^{i_2} \cdot P_r \cdot S^{i_2} P_2^{-1} S^{-i_2} \cdot S^{i_1} P_1^{-1} S^{-i_1}$$

$$= X^{-1} P_r X$$

Q and P_r are conjugate permutations with the same cycle structure

Rotor Cycle Structure Properties

- Advantage:
 - Encryption/ decryption operations are identical
- Weakness:
 - A given letter is never encrypted into itself
 - This is due to the turn-around permutation being selfinverse with no fixed points – all cycles are of order 2
 - This represents a Shannon redundancy of 0.057 bits/letter

Re-entry

 The technique matches the alphabet size to the number of contacts on the rotor

KL-7: 26:36:26

Protex: 26:32:26

$$B \rightarrow D \rightarrow 1 \rightarrow E \rightarrow C$$

Protex Design

- 5-bit alphabet
- 12 random permutations on 32 characters
 - One permutation is used as a reflector
 - The permutations are chosen such that $P \cdot S \neq S \cdot P$ (Shannon product cipher condition)

Protex Encryption/Decryption

Decryption uses P_{12}^{-1} as turn-around permutation

Rotor Machine Categorisation

Stream cipher with a dynamic key-dependent mixing function

Key Size

BFSC initial state : 11x5 = 55 bits

• Counters initial states : 11x5 = 55 bits

Ordering of 12 permutations: 12! = 28.8 bits

Total key size : 138.8 bits

Re-Entry

Re-entry on six 5-bit teleprinter control characters

No. of re- entries	Probability
0	0.812500
1	0.157258
2	0.026210
3	0.003615
4	0.000387
5	0.000029
6	0.000001

Average = 0.22

Implementation

Ferrite core memory storing 12 permutations and their inverses

Permutations were optimised to reduce the number of conductors threaded through aeach ferrite core

S-Box

Laboratory model S-Box showing 5 planes corresponding to the 5-bit words

Patch Panel

Patch panel to select a rearrangement of the 12! permutations

Attacks on Protex

- Cryptanalysis depends critically on the properties of the BFSC
 - Advance of the counters are irregular
- Side-channel attacks:
 - Timing attacks
 - Re-entry
 - Propagation of carry bit
 - Power analysis
 - Power surges due to switching of magnetic ferrite cores

Benefit of Hindsight

- The reflector structure of rotor machines offers no cryptographic advantage
 - Input-output permutations conjugate to a fixed permutation decreases entropy
- Re-entry is a serious weakness, making the cipher vulnerable to a timing attack

KEELOQ CIPHER

The travails of a 32-bit block cipher

KEELOQ

- Designed at Nanoteq in the 1980's
- Purpose: To provide increased security for remote keyless entry systems
 - Applications: car door, garage door openers, etc.
- Constraints
 - 32-bit radio transmission
 - low power
 - low component count

Protocol

- A block cipher to encrypt the state of a counter
- Key length: Initially 32 bits, but later increased to 64 bits
- Block length limited to 32 bits due to transmitter constraints

Design

- No *nxn* S-boxes, as these would be too expensive in component count
- Eventually it was decided to insert a single
 5x1 S-box
- An elementary key schedule to save components
 - Circulating shift register

Keeloq Encryption

Keeloq Decryption

Number of Steps (Rounds)

- Number of shift register steps: 528
- This was decided on as follows
 - Good SAC properties from plaintext to ciphertext
 - Each key bit should be active at least 8 times
- The 528 steps comprises 8½ cycles of the key register
- The ¼ cycle was introduced as a "nuisance" impediment to cryptanalysis

Tap Points on the Shift Register

- Latency: 1 clock period
 - Minimised to enhance diffusion of bit changes in encryption/decryption

The Non-Linear Function (NLF)

- Properties
 - 5-bit Boolean function
 - o-1 balanced
 - Algebraic degree : 3
 - Minimum distance to affine set : 8
 - Correlation immunity : 1
 - Function resiliency : 1

Attacks on Keeloq

Attack	Data	Tim	Mem	Reference
Attack		e		
Exhaustive search	2 KP	2 ⁶³	Small	
Time-memory trade-off	2 CP	2 ^{42.7}	100 TB	Hellman
Slide/algebraic	2 ¹⁶ KP	2 ^{51.4}	?	[Co, Ba, Wa]
Slide/guess and determine	2 ³² KP	2 37	16 GB	Bogdanov
Slide/cycle structure	2 ³² KP	2 ^{39.4}	16.5 GB	[Co, Ba]
Slide/fixed points	2 ³² KP	2 ²⁷	>16 GB	[Co, Ba, Wa]
Slide/meet-in-the-middle	2 ¹⁶ KP	2 ⁴⁵	≈2 MB	[In, Ke,]

Exhaustive Search

Exhaustive Search

- Computational Complexity = 2⁶³
- Time: 2 weeks using FPGA circuits

Most significant half (MSH)	Criterion	Number of ciphertexts
MAC = f(counter)	MSH* Satisfies MAC	2
Fixed ID (known)	MSH Equals ID	2
Fixed ID (unknown)	MSH differential	3
Random bits	16-bit counter mode	≤64

^{*} MSH = most significant half of counter

Deduced Plaintext for Exhaustive Search Attack

- Guess the state of the binary counter
 - The date of purchase of the car and the usage pattern of the driver might give a clue
 - At a usage pattern of 10 transmissions per day, the wrap-around period is approximately 18 years
- If the top bits are determined by the serial number of the transmitter, this provides the attacker with substantial information

Cryptologists Involved

- Bogdanov: Guess-and-determine, slide, and distinguishing attacks
- Courtois, Bard and Wagner: Slide-algebraic attack
- Indesteege, Keller, Dunkelman, Biham and Preneel: Slide- and meet-in-the-middle attacks
- Eisenbarth, M & T Kasper, Moradi, Paar, Salmasizadeh, Shalmani: Power analysis

Algebraic Attack

Keeloq Algebraic Equations

- NLF $(x_4, x_3, x_2, x_1, x_0) = x_0 \oplus x_1 \oplus x_0 x_1 \oplus x_0 x_3 \oplus x_0 x_4 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_2 x_4 \oplus x_0 x_1 x_4 \oplus x_0 x_2 x_4 \oplus x_1 x_3 x_4 \oplus x_2 x_3 x_4$
- Add 2 variables $\alpha = x_3 x_4$ and $\beta = x_0 x_4$
- Assume *F* bits of the key are known, then for *r* rounds of the cipher, there are
 - 3r + 64 + F multivariate quadratic equations in
 - 3r + 96 variables of which 64 + F are known
- The total number of distinct monomials is approximately 12*r*

Complexity of Algebraic Attack

- Faster than exhaustive search on reduced Keeloq:
 - With r = 128, 2 known plaintexts, 30 bits guessed, the remaining 34 bits are recovered in 150 s by the program MiniSat 2.0
 - With r = 160 rounds, 2 plaintexts in counter mode, 30 bits guessed, the remaining 34 bits are recovered in 233 s by the program MiniSat 2.0

Linear Slide Attacks

Linear Slide Attacks

- Data requirement: 2³² known plaintexts (Full code book)
- Basis of attack:
 - Self-similar key schedule (supports slide attack)
 - Efficient linear approximation to the NLF
 - Existence of linear relations within the algorithm

Slide Attack

A pair (P,C), (P^*,C^*) is called a *slid pair* if $F(P) = P^*$ and $F(C) = C^*$

Complexity of the Slide Attack

- Assume that P and P* is a slid pair, then so is C and C*
- Use this information to solve for *K*
- Verify the solution by checking additional plaintext-ciphertext pairs

Complexity

- The attacker is searching for collisions, which, due to the birthday paradox, have a high probability after 2^{n/2} pairs have been searched
- 2. Solving for K should be $<< 2^{K}$

Linear Approximation to NLF

$$NLF(x_{4}, x_{3}, x_{2}, x_{1}, x_{0}) = x_{0} \oplus x_{1} \oplus x_{0} x_{1} \oplus x_{0} x_{3} \oplus x_{0} x_{4} \oplus x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{2} x_{4} \oplus x_{0} x_{1} x_{4} \oplus x_{0} x_{2} x_{4} \oplus x_{1} x_{3} x_{4} \oplus x_{2} x_{3} x_{4}$$

• The best linear approximation, used in the slidedetermine attack, is $x_0 \oplus x_1$.

Pr(NLF(
$$x_4$$
, x_3 , x_2 , x_1 , x_0) = o| $x_0 \oplus x_1$ = o) = 5/8
Pr(NLF(x_4 , x_3 , x_2 , x_1 , x_0) = 1 | $x_0 \oplus x_1$ = 1) = 5/8

Best Determine-Slide Attack

- Data: 2³² known plaintexts (full codebook)
- Complexity: ≈ 2³⁷ Keeloq encryptions

Slide/Fixed Point Attacks

Cycle Structure of Keeloq

Slide-Determine Attack

- Remove the ¼ cycle by guessing the first 16 key bits and decrypting the ciphertext by 16 rounds
- Given the pair (p, c), Search for fixed points $f_k^8(p) = p$
 - About 2¹⁶ pairs will be found (birthday paradox)
- Store the triples $(p, c, (k_{15}, ..., k_0))$
- Apply an algebraic attack to determine the unknown 48 key bits
- Verify solutions by checking additional plaintextciphertext pairs

Complexity

- Data: 2³² known plaintexts (full codebook)
- Version A: Average = 231.1 Keeloq encryptions
- Version B (optimised): Average = 2^{27.7} Keeloq encryptions

Safe Keys

- The success of the attack depends on the existence of fixed points, and this is a function of the key
 - Version A works for about 63% of keys
 - The attack does not work for about 37% of keys
 - Optimised version A works for about 30% of keys

Slide/Meet-in-the-Middle Attack

Slide/Meet-in-the-Middle Attack

- Participating research groups
 - Computer science department, Technion, Israel
 - Research group COSIC of the Katholieke Universiteit Leuven, Belgium
 - Math department of the Hebrew University, Israel

Recovering Key Bits

 K_i is easily solved if L, L^* and U are known

Meet-in-the-Middle Attack

Meet-in-the-Middle Attack

Meet-in-the-Middle Attack

Complexity of the Attack

$$2^{16}(32 \cdot 2^{16} + 2^{16}(32 \cdot 2^{16} + 2^{16}(32 + 4))) = 2^{54.0}$$
 rounds

- Data: 2¹⁶ known plaintexts
 - 65 minutes to obtain data
- Time complexity: 2^{45.0} Keeloq encryptions
 - 7.8 days on 64 CPU cores
 - Variant requires 3.4 days on 64 CPU cores

Discussion

Discussion

- Keeloq has been successfully cracked, but a pure algebraic attack requires more research
- Improvements:
 - Scale up the Keeloq block and key lengths
 - Slight structural changes to the key schedule would stop slide attacks

Benefit of Hindsight

- The design team underestimated
 - The rapid progress in brute force computational capabilities
 - Discovery of new attacks, such as the slide attack

