Parallelizing the Camellia and SMS4 Block Ciphers

Huihui Yap^{1,2}, Khoongming Khoo 1,2 and $\boldsymbol{Axel}\ \boldsymbol{Poschmann}^2$

¹DSO National Laboratories, Singapore

²Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Africacrypt 2010, 3-6 May

イロト イポト イヨト イヨト

Outline of Talk

- Our Contribution
- 3 Definitions and Preliminaries
- Practical Security Evaluation of GF-NLFSR against DC and LC
- 5 Application
 - Parallelizing Camellia
 - Parallelizing SMS4

6 Conclusion

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	
Motivation	

- Object of interest: Parallelizable n-cell GF-NLFSR structures
- Encryption speed faster by up to n times
- Nonlinear round functions such as SDS structures too complex
 ⇒ not suitable for space and speed efficient implementation
- SPN round functions use relatively less resources
- ⇒ We investigate practical security against DC and LC of bijective SPN round functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	
Our Contribution	

- Provide a neat and concise proof for the minimum number of differential active S-boxes
- Parallelizing Camellia and SMS4: p-Camellia and p-SMS4
- Ensure that p-Camellia and p-SMS4 are secure against other block cipher cryptanalysis
- Hardware implementation advantages: Achieves higher maximum frequency with lower area and power demands

(1日) (1日) (日)

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	
SPN round function	

- *F*-function comprises: key addition layer, *S*-function, *P*-function.
- Neglect the effect of the round key since by assumption, the round key consists of independent and uniformly random bits, and is bitwise XORed with data
- *S*-function: non-linear transformation layer with *m* parallel *d*-bit bijective S-boxes
- P-function is a linear transformation layer

(4月) イヨト イヨト

• Throughout, assume S-function and P-function bijective

$$S : GF(2^{d})^{m} \to GF(2^{d})^{m}, X = (x_{1}, \dots, x_{m}) \mapsto Z = S(X) = (s_{1}(x_{1}), \dots, s_{n}(x_{n}))$$

$$P : GF(2^{d})^{m} \to GF(2^{d})^{m}, Z = (z_{1}, \dots, z_{m}) \mapsto Y = P(Z) = (y_{1}, \dots, y_{n})$$

$$F : GF(2^{d})^{m} \to GF(2^{d})^{m}, X \mapsto Y = F(X) = P(S(X))$$

Differential and Linear Probabilities

Definition

Let $x, z \in GF(2^d)$. Denote the differences and the mask values of x and z by Δx , Δz , and, Γx , Γz respectively. The differential and linear probabilities of each S-box s_i are defined as:

$$DP^{s_i}(\Delta x \to \Delta z) = \frac{\#\{x \in GF(2^d) | s_i(x) \oplus s_i(x \oplus \Delta x) = \Delta z\}}{2^d},$$
$$LP^{s_i}(\Gamma z \to \Gamma x) = (2 \times \frac{\#\{x \in GF(2^d) | x \cdot \Gamma x = s_i(x) \cdot \Gamma z\}}{2^d} - 1)^2.$$

イロト イヨト イヨト イヨト

Differential and Linear Probabilities

Definition

The maximum differential and linear probabilities of S-boxes are defined as:

$$p_{s} = \max_{i} \max_{\Delta x \neq 0, \Delta z} DP^{s_{i}}(\Delta x \to \Delta z),$$

$$q_s = \max_{i} \max_{\Gamma x, \Gamma z \neq 0} LP^{s_i}(\Gamma z \to \Gamma x).$$

イロン イヨン イヨン ・

3

Hamming Weight and Branch Number

Definition

Let $X = (x_1, x_2, \dots, x_m) \in GF(2^d)^m$. Then the Hamming weight of X is denoted by $H_w(X) = \#\{i|x_i \neq 0\}$.

(ロ) (同) (E) (E) (E)

Hamming Weight and Branch Number

Definition

Let $X = (x_1, x_2, \cdots, x_m) \in GF(2^d)^m$. Then the Hamming weight of X is denoted by $H_w(X) = \#\{i|x_i \neq 0\}$.

Definition

The branch number \mathcal{B} of linear transformation θ is defined as follows:

$$\mathcal{B} = \min_{x \neq 0} (H_w(x) + H_w(\theta(x))).$$

・ロン ・回 と ・ 回 と ・ 回 と

Branch Number - DC and LC

- Differential case:
- $\mathcal{B} = \min_{\Delta X \neq 0} (H_w(\Delta X) + H_w(\Delta Y))$
- ΔX is an input difference into the *S*-function, ΔY is an output difference of the *P*-function

(ロ) (同) (E) (E) (E)

Branch Number - DC and LC

Differential case:

- $\mathcal{B} = \min_{\Delta X \neq 0} (H_w(\Delta X) + H_w(\Delta Y))$
- ΔX is an input difference into the *S*-function, ΔY is an output difference of the *P*-function

Linear case:

- $\mathcal{B} = \min_{\Gamma Y \neq 0} (H_w(P^*(\Gamma Y)) + H_w(\Gamma Y))$
- ΓY is an output mask value of the *P*-function
- *P*^{*} is a diffusion function of mask values concerning the *P*-function
- Throughout, B is used to denote differential or linear branch number, depending on the context

Number of active S-boxes

Definition

A differential active S-box is defined as an S-box given a non-zero input difference. Similarly, a linear active S-box is defined as an S-box given a non-zero output mask value.

イロト イポト イヨト イヨト

Number of active S-boxes

Definition

A differential active S-box is defined as an S-box given a non-zero input difference. Similarly, a linear active S-box is defined as an S-box given a non-zero output mask value.

Theorem

Let $\mathcal{D}^{(r)}$ and $\mathcal{L}^{(r)}$ be the minimum number of all differential and linear active S-boxes for an r-round Feistel cipher respectively. Then the maximum differential and linear characteristic probabilities of the r-round cipher are bounded by $p_s^{D^{(r)}}$ and $q_s^{L^{(r)}}$ respectively.

イロト イポト イヨト イヨト

э

Kanda's result

Theorem

The minimum number of differential (and linear) active S-boxes $\mathcal{D}^{(4r)}$ for 4r-round Feistel ciphers with SPN round function is at least $r\mathcal{B} + \lfloor \frac{r}{2} \rfloor$.

(ロ) (同) (E) (E) (E)

Structure of *n*-cell GF-NLFSR

- Proposed in (CCKY ACISP'09)
- *n*-cell extension of the outer function *FO* of KASUMI (2-cell)
- Parallelizable, up to *n* times

$$X^{(i+n)} = Y^{(i)} \oplus X^{(i+1)} \oplus \cdots \oplus X^{(i+n-1)}$$

for $i = 1, 2, \cdots$.

Figure: *i*-th round of GF-NLFSR

Huihui Yap, Khoongming Khoo and Axel Poschmann

- 4 回 2 - 4 □ 2 - 4 □

Practical Security against DC

- Aim: investigate the upper bound of the maximum differential characteristic probability of GF-NLFSR cipher
- ullet \Rightarrow Need to find lower bound for $\mathcal{D}^{(r)}$

Lemma

For n-cell GF-NLFSR cipher, the minimum number of differential active S-boxes in any 2n consecutive rounds satisfies $\mathcal{D}^{(2n)} \geq \mathcal{B}$.

イロト イポト イヨト イヨト

Practical Security against DC

Proof.

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j = 1, \cdots, n$, at least one of $\Delta X^{(j)} \neq 0$

• Let *i* be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\mathcal{D}^{(2n)} = H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \cdots + H_w(\Delta X^{(2n)})$$

200

Practical Security against DC

Proof.

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j = 1, \cdots, n$, at least one of $\Delta X^{(j)} \neq 0$

• Let *i* be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\begin{aligned} \mathcal{D}^{(2n)} &= H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \dots + H_w(\Delta X^{(2n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)}) \dots + H_w(\Delta X^{(i+n)}) \end{aligned}$$

Practical Security against DC

Proof.

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j = 1, \cdots, n$, at least one of $\Delta X^{(j)} \neq 0$

• Let *i* be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\begin{aligned} \mathcal{D}^{(2n)} &= H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \dots + H_w(\Delta X^{(2n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)}) \dots + H_w(\Delta X^{(i+n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}), \end{aligned}$$

Practical Security against DC

Proof.

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j = 1, \cdots, n$, at least one of $\Delta X^{(j)} \neq 0$

• Let *i* be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\begin{aligned} \mathcal{D}^{(2n)} &= H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \dots + H_w(\Delta X^{(2n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)}) \dots + H_w(\Delta X^{(i+n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}), \\ &= H_w(\Delta X^{(i)}) + H_w(\Delta Y^{(i)}) \end{aligned}$$

 $\mathcal{O} \land \mathcal{O}$

Practical Security against DC

Proof.

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j = 1, \cdots, n$, at least one of $\Delta X^{(j)} \neq 0$

• Let *i* be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\begin{aligned} \mathcal{D}^{(2n)} &= H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \dots + H_w(\Delta X^{(2n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)}) \dots + H_w(\Delta X^{(i+n)}) \\ &\geq H_w(\Delta X^{(i)}) + H_w(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}), \\ &= H_w(\Delta X^{(i)}) + H_w(\Delta Y^{(i)}) \\ &\geq \mathcal{B}. \end{aligned}$$

200

Practical Security against DC

Remark

- With probability $1 \frac{1}{M}$, where *M* is the size of each cell, i.e. most of the time, $\Delta X^{(1)} \neq 0$
- \Rightarrow Able to achieve at least \mathcal{B} number of differential active S-boxes over (n + 1)-round most of the time

・ロン ・回 と ・ヨン ・ヨン

Practical Security against DC

With the previous lemma, straightforward to prove:

Theorem

The minimum number of differential active S-boxes for 2nr-round n-cell GF-NLFSR cipher with bijective SPN round function satisfies

$$\mathcal{D}^{(2nr)} \geq r\mathcal{B} + \lfloor rac{r}{2}
floor.$$

イロト イポト イヨト イヨト

Practical Security against DC

Observations:

- When n = 2, $\mathcal{D}^{(4r)} \ge r\mathcal{B} + \lfloor \frac{r}{2} \rfloor$
- $\bullet \Rightarrow$ Similar security against DC as Feistel ciphers with bijective SPN round function
- 2-cell GF-NLFSR has added advantage: parallelizable

イロン イヨン イヨン イヨン

Practical Security against LC

• Need to find lower bound for $\mathcal{L}^{(r)}$

Lemma

For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number $\mathcal{B} = 5$, the minimum number of linear active S-boxes in any 4 consecutive rounds satisfies $\mathcal{L}^{(4)} \geq 3$.

イロト イポト イヨト イヨト

Practical Security against LC

Outline of proof:

- ΓX⁽ⁱ⁾ and ΓY⁽ⁱ⁾: input, output mask values to the *i*-th round
 F function
- Assume that the 4 consecutive rounds run from the first round to the 4th round
- $\mathcal{L}^{(4)} = H_w(\Gamma Y^{(1)}) + H_w(\Gamma Y^{(2)}) + H_w(\Gamma Y^{(3)}) + H_w(\Gamma Y^{(4)})$
- Duality between differential characteristic and linear approximation: $\Gamma Y^{(i+1)} = \Gamma X^{(i-1)} \oplus \Gamma X^{(i)}$, for i = 2 and 3
- Go through all possible cases

 ΓΥ⁽¹⁾ = 0, 2. ΓΥ⁽¹⁾ ≠ 0, ΓΥ⁽²⁾ = 0...)

Practical Security against LC

With the previous lemma, straightforward to prove:

Theorem

For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number B = 5, we have

1
$$\mathcal{L}^{(8)} \geq 7$$

2
$$\mathcal{L}^{(12)} \ge 11$$
,

3
$$\mathcal{L}^{(16)} \ge 15$$
,

where $\mathcal{L}^{(r)}$ is the minimum number of linear active S-boxes over r rounds.

イロト イポト イヨト イヨト

- Jointly developed by NTT and Mitsubishi Electric Corporation
- 18-round Feistel structure for 128-bit key and 24 rounds for 192-bit and 256-bit keys,
- Additional input/output whitenings and logical functions, FL-function and FL^{-1} -function, inserted every 6 rounds
- Bijective SPN F-function
- S-function: 8 S-boxes in parallel
- P-function: bytewise exclusive-ORs

•
$$B = 5; p_s, q_s = 2^{-6}$$

イロト イポト イヨト イヨト

Parallelizing Camellia Parallelizing SMS4

p-Camellia: "Parallelizable" Camellia

- Replace Feistel network with 2-cell GF-NLFSR
- Other components such as number of rounds, S-function, P-function and the key schedule etc remain unchanged

イロン イヨン イヨン イヨン

Э

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	Parallelizing Camellia Parallelizing SMS4
DC of p-Camellia	

- *p*: Maximum differential characteristic probabilities reduced to 16-round
- Over 16 rounds \Rightarrow four 4-round blocks

• Recall:
$$\mathcal{B}=5$$
, $p_s=2^{-6}$

• By previous results, minimum number of differential active S-boxes = $4 \times 5 + 2 = 22$

•
$$\Rightarrow p \le (2^{-6})^{22} = 2^{-132} < 2^{-128}$$

 $\bullet \Rightarrow \mathsf{Secure} \text{ against } \mathsf{DC}$

回 と く ヨ と く ヨ と

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	Parallelizing Camellia Parallelizing SMS4
LC of p-Camellia	

- *q*: Maximum linear characteristic probabilities reduced to 16-round
- By previous results, minimum number of linear active S-boxes is 15

•
$$\Rightarrow q \leq (2^{-6})^{15} = 2^{-90}$$

- \Rightarrow Attacker needs to collect at least 2⁹⁰ chosen/known plaintexts to mount an attack, which is not feasible in practice
- $\bullet \ \Rightarrow \mathsf{Secure} \ \mathsf{against} \ \mathsf{LC}$

- Boomerang attack: Can be shown that for 16 rounds, probability of finding a boomerang distinguisher ≤ 2⁻¹⁸⁰ ⇒ Secure against boomerang attack
- Impossible differential attack: Maximum length of impossible differential distinguisher is 4
 ⇒ Full cipher secure against impossible differential attack
- Integral attack: Maximum length of integral distinguisher is 4 and attacker can extend by at most 3 rounds
 ⇒ Full cipher secure against impossible differential attack

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Other Attacks on p-Camellia

- - Slide attack: *FL* and *FL*⁻¹-functions provide non-regularity across rounds, and different subkeys used for every round ⇒ Unlikely to work
 - Higher order differential attack: Algebraic degree reaches maximum degree of 127 after 6th round ⇒ Unlikely to work
 - Interpolation attack: After passing through many S-boxes and P-functions, cipher becomes a complex function which is a sum of many multi-variate monomials over GF(2⁸) ⇒ Unlikely to work

・ロン ・回 と ・ヨン ・ヨン

Parallelizing Camellia Parallelizing SMS4

HW Implementation Strategies

イロト イポト イヨト イヨト

3

Parallelizing Camellia Parallelizing SMS4

HW Implementation Strategies

Huihui Yap, Khoongming Khoo and Axel Poschmann

Parallelizing the Camellia and SMS4 Block Ciphers

э

Parallelizing Camellia Parallelizing SMS4

HW Implementation Strategies

Huihui Yap, Khoongming Khoo and Axel Poschmann

Parallelizing the Camellia and SMS4 Block Ciphers

Parallelizing Camellia Parallelizing SMS4

Implementation Advantages of p-Camellia

- serialized: no disadvantage
- round-based: no disadvantage

イロト イヨト イヨト イヨト

э

Huihui Yap, Khoongming Khoo and Axel Poschmann Parallelizing the Camellia and SMS4 Block Ciphers

Parallelizing Camellia Parallelizing SMS4

Implementation Advantages of p-Camellia

- serialized: no disadvantage
- round-based: no disadvantage
- parallelized: critical path is halved
 - \rightarrow double Max. Freq.
 - \rightarrow lower fan-out
 - $\bullet \rightarrow$ lower gate count
 - ullet \to lower power consumption

イロト イポト イヨト イヨト

• if fully pipelined \rightarrow delay is halved

SMS4

- Underlying block cipher used in WAPI standard (Chinese national WLAN standard)
- 128-bit key, 32-round generalized Feistel structure
- Each round transforms four 32-bit words X_i , i = 0, 1, 2, 3:

 $(X_0,X_1,X_2,X_3,\textit{rk})\mapsto (X_1,X_2,X_3,X_0\oplus T(X_1\oplus X_2\oplus X_3\oplus\textit{rk})),$

where rk denotes the round key

- Non-linear function T: 32-bit subkey addition, S-box Substitution (layer of four 8-bit S-boxes), a 32-bit linear transformation L
- $B = 5; p_s, q_s = 2^{-6}$
- Key schedule has similar structure to main cipher with slight differences

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion	Parallelizing Camellia Parallelizing SMS4
p-SMS4: "Parallelizable" SN	1S4

- Replace generalized Feistel network with 4-cell GF-NLFSR
- Modify key schedule to have same structure as the main cipher: also parallelizable in hardware
- Other components such as number of rounds, *S*-function, *P*-function etc remain unchanged

・ 同 ト ・ ヨ ト ・ ヨ ト

Parallelizing Camellia Parallelizing SMS4

Security of p-SMS4 against block cipher attacks

- Follows similar analysis to p-Camellia
- $\bullet\,$ E.g. Can be shown differential characteristic probability over 29 rounds $\leq 2^{-108}$
- \Rightarrow Attacker needs to collect at least 2¹⁰⁸ chosen plaintext-ciphertext pairs
- For random input differences, only 2⁻³² of the time do we need 8 rounds to ensure at least 5 active S-boxes
- Similar to SMS4, no bound for characteristic linear probability of p-SMS4 provided in this paper
- But the bound has been derived! (upcoming extended version)

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC Application Conclusion Security of p-SMS4 against block cipher attacks

- Similar to p-Camellia, we show that p-SMS4 is secure against boomerang, impossible differential, integral, slide, XSL, higher order differential and interpolation attacks.
- Differential probability for the key schedule is at most 2⁻⁹⁰.
 → related key differential attack is not feasible (at least 2⁹⁰ related keys required).

イロト イポト イヨト イヨト

Parallelizing Camellia Parallelizing SMS4

Implementation Advantages of p-SMS4

- *serialized*: no disadvantage
- round-based: no disadvantage

Huihui Yap, Khoongming Khoo and Axel Poschmann

Parallelizing the Camellia and SMS4 Block Ciphers

イロト イポト イヨト イヨト

Э

Parallelizing Camellia Parallelizing SMS4

Implementation Advantages of p-SMS4

- *serialized*: no disadvantage
- round-based: no disadvantage
- parallelized: critical path is $\frac{1}{4}$
 - \rightarrow 4x Max. Freq.
 - \rightarrow lower fan-out
 - $\bullet \ \rightarrow \ \text{lower gate count}$
 - $\bullet \ \rightarrow \ \text{lower power consumption}$

イロト イポト イヨト イヨト

• if fully pipelined \rightarrow delay is $\frac{1}{4}$

Huihui Yap, Khoongming Khoo and Axel Poschmann

Parallelizing the Camellia and SMS4 Block Ciphers

Motivation Our Contribution Definitions and Preliminaries Practical Security Evaluation of GF-NLFSR against DC and LC	
Conclusion	
Conclusion	

- Proposed the use of *n*-cell GF-NLFSR structure to parallelize (Generalized) Feistel structures
- Used two examples, p-Camellia and p-SMS4, and showed that they offer sufficient security against various known existing attacks
- Hardware implementations have *n* times higher maximum frequency, while having lower area and power demands
- ⇒ n-cell GF-NLFSRs are particularly well suited for high throughput applications

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation	Motivation
Our Contribution	ntribution
Definitions and Preliminaries	eliminaries
Practical Security Evaluation of GF-NLFSR against DC and LC	DC and LC
Application	upplication
Conclusion	Conclusion

Thank you!

▲ □ > < □ >

< ∃ >

э