Batch Range Proof For Practical Small Ranges

Kun Peng and Feng Bao

dr.kun.peng@gmail.com

Institute for Inforcomm Research (I^2R) , Singapore

- 1. Introduction
- 2. Range proof
- 3. Batch proof
- 4. Extended batch proof and verification
- 5. Application to range proof
- 6. Conclusion

 $\leftarrow 2 \rightarrow$

Range Proof

- > Knowledge of a secret integer m in an interval range R.
- ► Sealed in a ciphertext or commitment.
- Proof to show that it is in the range.
- ▶ No other information is revealed.

3

 Frequently needed in cryptographic applications.

Security Properties

- Correctness: if the integer is in the range and the prover knows the integer and strictly follows the proof protocol, he can pass the verification in the protocol.
- Soundness: if the prover passes the verification in the protocol, the integer is guaranteed with an overwhelmingly large probability to be in the range.
- Privacy: no information about the integer is revealed in the proof except that it is in the range.

ZK Proof of Partial Knowledge

- ▶ Proposed by Cramer et al at 1994.
- > Prove that the committed integer may be each integer in the range one by one.
- ▶ Link the multiple proofs with OR logic.
- ▶ Almost perfect in security.

5

> Drawback: its cost is linear in the size of the range.

Higher Asymptotic Efficiency

- Respectively proposed by Boudot in 2000, Lipmaa in 2003 and Groth in 2005.
- Employing cyclic groups with secret orders and computations in Z.
- Asymptotically high efficiency.
- But actual cost is not so satisfying, especially for small ranges.
- > Depending on the factorization problem.
 - Computations in Z weakens privacy.

Small Ranges

- ► The most recent and advanced range proof by Camenisch et al in 2008.
- In most practical applications the ranges are not large.
- ► Asymptotic efficiency is not so important.
- ► More efficient for small ranges.
- Depends on hardness of (\log_k) -Strong Diffie Hellman assumption.

Our Motivations

- Solutions with high security is inefficient.
- Asymptotically efficient solutions weaken security.
- Only one solution for practically small ranges.
- Higher efficiency is desired, especially in small ranges.
- ► High security should be maintained.

Batch Proof and Verification

► Firstly proposed by Bellare et al in 1998.

- > Developed by Gennaro et al and Peng et al.
- ► Batching multiple proofs into one instance.
- Employing small exponents to save cost.
- A kind of trade-off between efficiency and security.

Batch Proof and Verification by Chida and Yamamoto 1

▶ p, q are primes such that q|p-1.

- ▶ G is the cyclic subgroup with order q of Z_p^* .
- ▶ g and $y_{i,1}$, $y_{i,2}$ for i = 1, 2, ..., n are in G.
- ► The prover knows $b_i \in \{0, 1\}$ and s_{i,b_i} such that $y_{i,b_i} = g^{s_{i,b_i}}$.

Batch Proof and Verification by Chida and Yamamoto 2

The prover selects $r, v, c_{i,\overline{b}_i} \in_R Z/qZ$ and computes $R_0 = g^r \prod_{\{i|b_i=1\}} y_{i,0}^{c_{i,0}}$ $R_1 = g^v \prod_{\{i|b_i=0\}} y_{i,1}^{c_{i,1}}$

$$c_{i} = H(CI||c_{i-1}||c_{i-1,0})$$

$$c_{i,b_{i}} = c_{i} - c_{i,\bar{b}_{i}} \mod q$$

$$z_{0} = r - \sum_{\{i|b_{i}=0\}} c_{i,0}s_{i,0} \mod q$$

$$z_{1} = v - \sum_{\{i|b_{i}=1\}} c_{i,1}s_{i,1} \mod q$$

where $c_0 = R_0$ and $c_{0,0} = R_1$.

 $\leftarrow \perp \perp -$

Batch Proof and Verification by Chida and Yamamoto 3

- 1. The prover sends $(z_0, z_1, c_1, c_{1,0}, \ldots, c_{n,0})$ to the verifier
- 2. The verifier computes

$$c_{i,1} = c_i - c_{i,0} \mod q$$

 $c_{i+1} = H(CI||c_i||c_{i,0})$

and verifies

$$c_1 = H(CI||g^{z_0}\prod_{i=1}^n y_{i,0}^{c_{i,0}}||g^{z_1}\prod_{i=1}^n y_{i,1}^{c_{i,1}})$$

 \leftarrow 12 \rightarrow

▶ The parameters are the same.

13

> The number of possible discrete logarithms in each case is extended from 2 to k.

▶ g and $y_{i,j}$ for i = 1, 2, ..., n and j = 1, 2, ..., kare in G.

► The prover knows $b_i \in \{1, 2, ..., k\}$ and s_{i,b_i} such that $y_{i,b_i} = g^{s_{i,b_i}} \mod p$ for i = 1, 2, ..., n.

The prover selects r_1, r_2, \ldots, r_k from Z_q and $c_{i,j}$ for $i = 1, 2, \ldots, n$ and $j \in S_i$ from Z_{2^L} and computes

$$R_{1} = g^{r_{1}} \prod_{1 \leq i \leq n, \ b_{i}=1} \prod_{j \in S_{i}} y^{c_{i,j}}_{i,j} \mod p$$
$$R_{2} = g^{r_{2}} \prod_{1 \leq i \leq n, \ b_{i}=2} \prod_{j \in S_{i}} y^{c_{i,j}}_{i,j} \mod p$$

$$R_{k} = g^{r_{k}} \prod_{1 \le i \le n, b_{i} = k} \prod_{j \in S_{i}} y_{i,j}^{c_{i,j}} \mod p$$

 \leftarrow 14 \rightarrow

The prover calculates

$$c_{i} = H(CI||c_{i-1}||c_{i-1,1}||c_{i-1,2}|| \dots ||c_{i-1,k-1})$$

$$c_{i,b_{i}} = c_{i} - \sum_{j \in S_{i}} c_{i,j} \mod q$$

$$z_{1} = r_{1} - \sum_{\{i|b_{i}=1\}} c_{i,1}s_{i,1} \mod q$$

$$z_{2} = r_{2} - \sum_{\{i|b_{i}=2\}} c_{i,2}s_{i,2} \mod q$$

$$\dots$$

$$z_{k} = r_{k} - \sum_{\{i|b_{i}=k\}} c_{i,k}s_{i,k} \mod q$$
where $c_{0} = R_{0}$ and $c_{0,0} = R_{1}$.

 $\leftarrow 15 \rightarrow$

1. The prover sends

 $(z_1, z_2, \dots, z_k, c_1, c_{1,1}, c_{1,2}, \dots, c_{1,k-1}, c_{2,1}, c_{2,2}, \dots, c_{2,k-1}, \dots, c_{n,1}, c_{n,2}, \dots, c_{n,k-1})$ to the verifier

2. The verifier computes

$$c_{i,k} = c_i - \sum_{j=1}^{k-1} c_{i,j} \mod 2^L$$
$$c_i = H(CI||c_{i-1}||c_{i-1,1}||c_{i-1,2}||\dots||c_{i-1,k-1})$$

and verifies

$$c_{1} = H(CI||g^{z_{1}}\prod_{i=1}^{n}y_{i,1}^{c_{i,1}} \mod p||g^{z_{2}}\prod_{i=1}^{n}y_{i,2}^{c_{i,2}}$$
$$\mod p||\dots||g^{z_{k}}\prod_{i=1}^{n}y_{i,k}^{c_{i,k}} \mod p)$$

 \leftarrow 16 -

The New Range Proof Protocol

- \triangleright Representing the secret integer x in a base-k system.
- \triangleright Range proof reduced to $\log_k(b-a)$ instances of proof that each digit of the base-krepresentation of x - a is in Z_k .

 \blacktriangleright The $\log_k(b-a)$ instances of proof can be batched using the extended batch proof and verification technique.

17

▶ Efficiency can be improved.

How to Prove

- 1. $c = g^{x}h^{r} \mod p$ where h is a generator of G and $\log_{q} h$ is unknown.
- 2. $c' = c/g^a \mod p$.

18

- 3. The prover calculates representation of x a in the base-k system (x_1, x_2, \ldots, x_n) .
- 4. He randomly chooses r_1, r_2, \ldots, r_n in Z_q and publishes $e_i = g^{x_i} h^{r_i} \mod p$ for $i = 1, 2, \ldots, n$.

5. He proves knowledge of

$$r' = \sum_{i=1}^{n} r_i k^{i-1} - r \mod q$$
 such that
 $h^{r'}c' = \prod_{i=1}^{n} e_i^{k^{i-1}} \mod p.$

How to Prove Cont

6. The range proof is reduced to n smaller-scale ranges proofs

 $KN(\log_h e_i) \lor KN(\log_h e_i/g) \lor KN(\log_h e_i/g^2)$ $\lor \cdots \lor KN(\log_h e_i/g^{k-1}) \text{ for } i = 1, 2, \dots, n$

where KN(z) denotes knowledge of z.

7. The proof can be implemented through batch proof and verification of knowledge of 1-out-of-k discrete logarithms.

Conclusion

- The batch proof and verification technique by Chida and Yamamoto is extended.
- The new batch proof and verification technique proposed in this paper is more general and can save more cost.
- The new technique is employed to improve efficiency and security of range proof in practical small ranges.

Questions?