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Range Proof

Knowledge of a secret integer m in an interval
range R.

Sealed in a ciphertext or commitment.
Proof to show that it is in the range.
No other information is revealed.

Frequently needed in cryptographic
applications.




Security Properties

» Correctness: if the integer is in the range and
the prover knows the integer and strictly follows
the prootf protocol, he can pass the verification
in the protocol.

» Soundness: if the prover passes the verification
in the protocol, the integer is guaranteed with
an overwhelmingly large probability to be in
the range.

» Privacy: no information about the integer is
revealed in the proof except that it is in the

range.
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ZK Proof of Partial Knowledge

» Proposed by Cramer et al at 1994.

» Prove that the committed integer may be each
integer in the range one by one.

» Link the multiple proofs with OR logic.
» Almost perfect in security.

» Drawback: its cost is linear in the size of the
range.




Higher Asymptotic Efficiency

» Respectively proposed by Boudot in 2000,
Lipmaa in 2003 and Groth in 2005.

» Employing cyclic groups with secret orders and
computations in Z.

» Asymptotically high efficiency.

» But actual cost is not so satisfying, especially
for small ranges.

» Depending on the factorization problem.

» Computations in Z weakens privacy.
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Small Ranges

» The most recent and advanced range proof by
Camenisch et al in 2008.

» In most practical applications the ranges are
not large.

» Asymptotic efficiency is not so important.
» More efficient for small ranges.

» Depends on hardness of (log, )-Strong Diffie
Hellman assumption.
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Our Motivations

Solutions with high security is ineflicient.

Asymptotically efficient solutions weaken
security.

Only one solution for practically small ranges.

Higher efficiency is desired, especially in small
ranges.

High security should be maintained.




Batch Proof and Verification

Firstly proposed by Bellare et al in 1998.
Developed by Gennaro et al and Peng et al.
Batching multiple proofs into one instance.

Employing small exponents to save cost.
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A kind of trade-off between efficiency and
security.




Batch Proof and Verification by
Chida and Yamamoto 1

» p,q are primes such that ¢|p — 1.
» G is the cyclic subgroup with order q of Z7.
» gand y; 1, y;2 fori=1,2,... , narein G.

» The prover knows b; € {0,1} and s;;, such that

. - 5',b-
yz,b,,; _g ©P
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Batch Proof and Verification by
Chida and Yamamoto 2

The prover selects r,v,¢; ;. €r Z/qZ and computes

Ro=g" 11{i|b;,=1} yijdo
Ry = g" T gip—oy Ui’
c;, = H(CIl|ci—1||ci—1.0)

Cib; = Ci — C; 3, mod ¢

20 =T = D _filp,=0} Ci,08i,0 mod ¢

2= 0= ) g, =1y Ci18i mod g

where co = Rg and cg o = ;.
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Batch Proof and Verification by
Chida and Yamamoto 3

1. The prover sends (2g, 21,€1,¢1,05---,Cn0) to the
verifier

2. The verifier computes

Ci,1 = C; — G40 mod ¢
ci+1 = H(CI||cil|eip)

and verifies

H(CI|lg™ TTiey v oo™ Tl vsit)
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Our Extension 1

» The parameters are the same.

» The number of possible discrete logarithms in
cach case is extended from 2 to k.

» gand y; j fore=1,2,...,nand j=1,2,...,k
are in G.

» The prover knows b; € {1,2,...,k} and s;,
such that y; 5, = ¢g°** mod p for i =1,2,... n.
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The prover selects r1, 79, ..

Our Extension 2

— ATk i
Ry = 9 ngign, b=k Hjési yi,j

., T from Z, and ¢; ; for

1 =1,2,...,nand 53 € 5; from Z,. and computes
— ’r']_ [ Ciaj
Ri=9" l1<i<n, b,=1 F.jeSi y;; mod p
—_ T2 [ C’La.j
Ry = 9" [l1<i<n, b,=2 F.jeSi Y; ; mod p

mod p
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Our Extension 3

The prover calculates
H(CIl|ei—1|lci-1,1
Cijpi = Ci — Djes, Cij mod g
21 =T1= ) fijp,=1} Ci,18i,1 mod ¢

22 = T2 — Z{ﬂbizg} Ci,254,2 mod ¢

ci1,2]] - lleim1k-1)

Zk =Tk = 2_{i|b;—k} Ci,kSik MmOd ¢

where cp = Ro and cg g = ;.
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Our Extension 4

1. The prover sends

(217227---,Zk701761,1761,2 ceyC1k—1,C21,C22 ...,
Cok—1yevn-- n,1,Cn2 ..., Cn,k—l) to the verifier

2. The verifier computes

k—1 L
Cz’,k:Cz’_Z] _, ¢ mod 2

c; = H( leiz1k-1)

and verifies
¢ = H(CI||g™ [T, w55t mod pllg™ [T1, v5s?
modp|| ... |lg** [T\—; y; " mod p)
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The New Range Proof Protocol

» Representing the secret integer x in a base-k
system.

» Range proof reduced to log, (b — a) instances of
proof that each digit of the base-k
representation of x — a is in Z;..

» The log, (b — a) instances of proof can be
batched using the extended batch proof and
verification technique.

» Efficiency can be improved.
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How to Prove

1. ¢ = g*h" mod p where h is a generator of G and
log, h is unknown.

2. ¢ =c¢/g® mod p.
3. The prover calculates representation of x — a in
the base-k system (x1,z2,...,2,).
4. He randomly chooses r1,72,...,7, In Z, and
publishes e; = ¢**h"* mod p for : =1,2,...,n.
5. He proves knowledge of
r'=35""  r;k"" —r mod ¢ such that
h'e =TI, e¥ mod p.

1
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How to Prove Cont

6. The range prooft is reduced to n smaller-scale
ranges proots

KN(log, e;) V KN(log, e;/g) V KN (log, e;/g*)
\/---\/KN(loghei/gk_l) fore=1,2,....n

where K N (z) denotes knowledge of z.

7. The proof can be implemented through batch
proof and verification of knowledge of 1-out-of-k
discrete logarithms.
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Conclusion

The batch proof and verification technique by
Chida and Yamamoto is extended.

The new batch proof and verification technique
proposed in this paper is more general and can
save more cost.

The new technique is employed to improve
efficiency and security of range proof in
practical small ranges.
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Questions?
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