
AfricaCrypt 2010 1

SSH: A Case Study of Cryptography
in Theory and Practice

Kenny Paterson

Information Security Group

Royal Holloway, University of London

Joint work with Martin Albrecht and Gaven Watson

AfricaCrypt 2010 2

Outline

Introduction to SSH

A New Security Analysis of SSH

Concluding Remarks

Security Proofs for SSH

Breaking SSH

AfricaCrypt 2010 3

Introduction to SSH

AfricaCrypt 2010 4

CINS/F1-01

Introduction to SSH

Secure Shell or SSH is a network protocol that allows

data to be exchanged using a secure channel between

two networked devices. Used primarily on Linux and

Unix based systems to access shell accounts, SSH was

designed as a replacement for TELNET and other

insecure remote shells, which send information, notably

passwords, in plaintext, leaving them open for

interception. The encryption used by SSH provides

confidentiality and integrity of data over an insecure

network, such as the Internet.

– Wikipedia

AfricaCrypt 2010 5

CINS/F1-01

Introduction to SSH

• SSHv1 had several security flaws.

– Worst ones arising from use of CRC algorithm to provide

integrity.

– Enabling, for example, traffic injection attacks.

• SSHv2 was standardised in 2006 by the IETF in RFCs

4251-4254.

– But basic specification dates from the late 1990s.

• SSHv2 is widely regarded as providing strong security.

– Widely used to enable secure remote administration of sensitive

systems.

– One minor flaw in the BPP that in theory allows distinguishing

attacks ([D02]; [BKN02]).

– Simple countermeasure adopted in, for example, OpenSSH.

– Dozens of different implementations of SSH.

AfricaCrypt 2010

SSHv2 Architecture

SSHv2 adopts a three layer architecture:

• SSH Transport Layer Protocol.

– Initial connection establishment and key exchange.

– Server authentication (almost always).

– Sets up a secure channel between client and server, using the

SSH Binary Packet Protocol specified in RFC 4253.

• SSH User Authentication Protocol.

– Client authentication over secure Transport Layer channel.

• SSH Connection Protocol.

– Supports multiple concurrent connections over a single

Transport Layer secure channel.

– Efficiency (session re-use) and support for multiple

applications.

AfricaCrypt 2010

SSHv2 Architecture

SSH Transport Layer Protocol

SSH User Authentication Protocol

TCP

SSH Connection Protocol

Applications

AfricaCrypt 2010 8

CINS/F1-01

The SSH BPP

Encrypt

MAC

Payload

Ciphertext MAC tag

Sequence

Number 4

Packet

Length 4

Pad

Len 1
Padding

≥4

• Encode-then-Encrypt&MAC construction, not generically secure.

– Because secure MAC can leak plaintext information.

• Packet length field measures the size of the packet on the wire in bytes

and is encrypted to hide the true length of SSH packets.

• Variable length padding is permissible; padding needed for CBC mode

and carried over to CTR mode.

AfricaCrypt 2010 9

CBC Mode in SSH

• RFC 4253 mandates 3DES-

CBC and recommends

AES-CBC.

– In fact, all originally

specified optional

configurations involve CBC

mode, and ARCFOUR was

the only optional stream

cipher.

• SSH uses a chained IV in

CBC mode:

– IV for current packet is the

last ciphertext block from

the previous packet.

– Effectively creates a single

stream of data from

multiple SSH packets.

Ci-1 Ci

Pi-1 Pi

dK dK

Pi-1 Pi

Ci-1 Ci

eK eK

AfricaCrypt 2010 10

CTR Mode in SSH

• CTR mode uses block

cipher to build a stream

cipher.

• CTR mode for SSH

standardised in RFC 4344.

• Initial value of counter

is obtained from

handshake protocol.

• Packet format is

preserved from CBC

case.

• Recommends use of

AES-CTR with 128,

192 and 256-bit keys,

and 3DES-CTR.

Ci

eK

Pi

ctr+i

Pi

eK

Ci

ctr+i

AfricaCrypt 2010 11

MACs in SSH

• A MAC algorithm has two

inputs:

• A message.

• A symmetric key K.

• Output is a (short) MAC tag.

• Key requirement is

unforgeability:

• Having seen MAC tags for

many chosen messages,

an adversary cannot create

the correct MAC tag for

another chosen message.

• SSH requires support for

HMAC-SHA1 and recommends

support for HMAC-SHA1-96.

MAC tag

MAC

Message

K

AfricaCrypt 2010 12

Introduction to SSH

Security Proofs for SSH

AfricaCrypt 2010 13

Security of the SSH BPP

• Attack of [D02], [BKN02] exploits chained IVs in CBC

mode.

– Breaks semantic security of the SSH BPP in a chosen ciphertext

attack model.

• Attacker can distinguish which one of two chosen messages was encrypted.

– Low success probability against SSH implementations because of

specifics of packet format.

– Prevented in OpenSSH by optional use of dummy packets to hide

IVs until it is too late for attacker to make use of them.

• Basic message: SSH BPP using CBC mode with chained

IVs is insecure according to the standard theoretical

notion of security.

AfricaCrypt 2010 14

Security of the SSH BPP

• [BKN02] developed a stateful security model for general

encode-then-encrypt&MAC schemes.

– IND-SFCCA security, where SF=Stateful.

– Attacker has access to an LoR encryption oracle and a decryption

oracle.

– Both oracles are stateful, with states parameterised by SSH

sequence numbers.

– Model allows adversary to advance states to any chosen value via

queries to encryption and decryption oracles.

• Adversary can submit output of encryption oracle at SN to decryption

oracle at SN, but receives no output from decryption oracle.

– Adversary wins game if he can guess hidden bit b of encryption

oracle.

AfricaCrypt 2010 15

Security of the SSH BPP

• Using this model, [BKN02] proved the security of

variants of the SSH BPP under reasonable

assumptions concerning:

– The encryption component.

• Essentially, IND-CPA security.

– The MAC component.

• Strong unforgeability and pseudo-randomness.

– The randomness of the padding scheme.

– Collision properties of the encoding scheme.

• In practice, for SSH BPP, this means not too many packets

can be encrypted.

AfricaCrypt 2010 16

Security of the SSH BPP

• In particular, [BKN02] established the IND-

SFCCA security of SSH-$NPC and SSH-CTR.

– SSH-$NPC = SSH using a block cipher in CBC mode

with explicit, per-packet, random IV and with random

padding.

• In contrast to chained IVs used in SSH BPP.

– SSH-CTR = SSH using a block cipher in counter

mode, with counter maintained at sender and

receiver.

AfricaCrypt 2010 17

Introduction to SSH

Security Proofs for SSH

Breaking SSH

AfricaCrypt 2010 18

Attacking the SSH BPP

• [APW09]: plaintext recovering attacks against SSH BPP.

– Much stronger than distinguishing attack of [D02], [BKN02]!

• These attacks exploit the interaction of the following

features of the BPP specification:

– The attacker can send data on an SSH connection in small

chunks (TCP).

– CBC mode is mandated.

– A MAC failure is visible on the network.

– The packet length field encodes how much data needs to be

received before the MAC is received and the integrity of the

packet can be checked.

AfricaCrypt 2010 19

Attacking the SSH BPP (Theory)

• The attacker monitors an SSH connection and

selects any target ciphertext block Ci
*. Here:

Ci
* = eK(Ci-1

* Pi
*), i.e. Pi

* = Ci-1
* dK(Ci

*)

• The attacker injects Ci
* so it as seen as the first

block of a new SSH packet by the receiver…

AfricaCrypt 2010 20

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

The receiver will treat the first 32 bits of the calculated plaintext

block as the packet length field for the new packet. Here:

P0’ = IV dK(Ci*)

where IV is known from the previous packet.

AfricaCrypt 2010 21

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

The attacker then feeds random blocks to the receiver.

– One block at a time, waiting to see what happens at the server

when each new block is processed.

R R

P2’

dK
dK

P1’

AfricaCrypt 2010 22

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

• Eventually, once enough data has arrived, the receiver will receive

what it thinks is the MAC tag.

• The receiver will then check the MAC.

– This check will fail with overwhelming probability.

– Consequently the connection is terminated (with an error message).

• How much data is “enough” so that the receiver decides to check

the MAC?

R R

P2’

dK
dK

P1’

MAC tag

AfricaCrypt 2010 23

Attacking the SSH BPP (Theory)

• The receiver has to use the packet length field

to decide when the MAC tag has arrived.

• Hence an attacker who counts the number of

blocks needed to cause connection termination

learns the packet length field.

• That is, the attacker learns the first 32 bits of:

P0
’ = IV dK(Ci

*).

AfricaCrypt 2010 24

Attacking the SSH BPP (Theory)

IV Ci
*

P0
’

dK

• Knowing IV and 32 bits of P0
’, the attacker can

now recover 32 bits of the target plaintext

block:

Pi
* = Ci-1

* dK(Ci
*) = Ci-1

* IV P0
’

Cj-1
* Ci

*

Pi
*

dK

AfricaCrypt 2010 25

Attack Performance (Theory)

• As described, this simple attack succeeds in

recovering 32 bits of plaintext from an arbitrary

ciphertext block with probability 1.

– But requires the injection of about 231 random bytes

to trigger the MAC check.

– And leads to an SSH connection tear-down.

• The attack breaks the SSH BPP.

• The attack still works if a fresh IV is used for

each new SSH packet.

– Breaking SSH-$NPC that was proven secure in

[BKN02].

AfricaCrypt 2010 26

Attacking OpenSSH

• OpenSSH is the most popular implementation

of the SSH RFCs.

– Open-source, distributed as part of OpenBSD.

– OpenSSH webpages state that OpenSSH accounts

for more than 80% of all deployed SSH servers.

– www.openssh.org/usage/index.html

• We worked with OpenSSH 5.1.

– Version 5.2 released 23/02/2009 partly as a

consequence of our work, current version is 5.3.

AfricaCrypt 2010 27

Attacking OpenSSH

• In OpenSSH 5.1, two sanity checks are carried
out on the packet length field after the first
block is decrypted.

• When each of the checks fails, the SSH
connection is terminated in subtly different
ways.
– This difference leaks some information, but also

reduces success prob. of the attack.

• If the length checks pass, then OpenSSH 5.1
waits for more bytes.

• Finally, when the MAC check fails, a third type
of connection termination is seen.

AfricaCrypt 2010 28

Attacking OpenSSH

• The manner in which OpenSSH 5.1 behaves
on failure allows:
– A first attack verifiably recovering 14 bits of plaintext

with probability 2-14.

– A second attack verifiably recovering 32 bits of
plaintext with probability 2-18 (for a 128-bit block
cipher).

– The attacks require injection of (roughly) 218 bytes.

• Both attacks result in termination of the SSH
connection.
– But the attacks can be iterated if a plaintext is

repeated across multiple connections.

• The attacks worked in practice.

AfricaCrypt 2010

Iterating the attacks

• If a fixed plaintext is repeated at a fixed position

in SSH packets over multiple connections, then

the attacks can be iterated to boost success

rate.

– Application to password extraction.

– Some clients automatically reconnect on session

termination.

– By carefully selecting after which IV to inject the

target ciphertext block, we can reduce the number of

connections consumed during the attack to 214 + 24.

AfricaCrypt 2010

Disclosure

• We worked with the UK Centre for Protection of

National Infrastructure (CPNI) to disclose the

attacks.

– www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.

txt

– Advisory published 14/11/2008.

– Vendors notified well ahead of time, giving

opportunity to prepare fixes.

– Recommends switching to counter mode encryption.

AfricaCrypt 2010

Reactions and Countermeasures

• OpenSSH published a statement and

committed a first fix (21/11/2008).

– www.openssh.com/txt/cbc.adv

– Both the statement and the bugfix addressed only

the 2-14 attack.

• Then OpenSSH released OpenSSH 5.2

(23/02/2009).

– Offers AES in counter mode and arcfour256 stream

cipher ahead of CBC mode block ciphers.

AfricaCrypt 2010

Reactions and Countermeasures

• www.openssh.org/txt/release-5.2:

– “This release also adds countermeasures to mitigate

CPNI-957037-style attacks against the SSH

protocol’s use of CBC-mode ciphers.”

– 20-30 lines of new code with no comments.

– If length checks fail, then set length field to 218 and

carry on.

– This renders OpenSSH more vulnerable to DoS

attacks!

– And there‟s still a distinguishing attack.

AfricaCrypt 2010

Further Vendor Reactions

• SunSSH increased the version number because of a

security vulnerability “for the first time”.

– However, it seems they only addressed the 2-14 attack.

• SSH.com acknowledged that their products are

vulnerable and claim to have addressed the issue.

• Bitvise acknowledged that their WinSSHD product is

vulnerable and issued an update.

– Randomisation of length field after failure of sanity checking.

• Dropbear added support for counter mode.

• Partial list of affected vendors and products at:

http://www.kb.cert.org/vuls/id/958563

AfricaCrypt 2010

Some Countermeasures

• Use counter mode.

– Stateful version of counter mode needed, as

standardised in RFC 4344.

– Our attacks no longer apply.

• Enforce use of counter mode.

– Not standards compliant with the RFCs as they are

currently written.

– Some implementations do not support counter mode

at all, creating backwards compatibility issue.

– “Only a cryptographer would suggest this...”

AfricaCrypt 2010

Further Countermeasures

• Randomise the length field if the length checks

fail.

– The Bitvise solution.

• Don't encrypt the length field.

– Invasive and makes certain DoS attacks easier.

• Separately MAC the length field.

– Invasive.

• Use authenticated encryption algorithm in place

of SSH‟s ad hoc construction.

– Invasive, and still can‟t safely encrypt the length

field.

AfricaCrypt 2010 36

Impact of the Attacks

• SSH was meant to be bullet-proof, but our
attacks are really quite simple.

• The specific attacks are easily circumvented by
switching to CTR mode or by modifying error
handling in CBC mode.

• Unfortunately, this does not constitute a proof
of security against attacks of the type
presented here.

• And the basic attack applied to the proven
secure variant SSH-$NPC
– Hinting at inadequacies of the approach used in

[BKN02].

AfricaCrypt 2010 37

Introduction to SSH

A New Security Analysis of SSH

Security Proofs for SSH

Breaking SSH

AfricaCrypt 2010 38

Limitations of [BKN02]

• The security model of [BKN02] does model errors arising

during the BPP decryption process.

– Connection teardown is modeled by disallowing access to

decryption and encryption oracles after any error event.

– Errors can arise from decryption, decoding or MAC checking.

• But only a single type of error message is output.

– The 2-14 attack against OpenSSH exploits the fact that different

error events are distinguishable.

• And the model assumes that decoding errors arise

before MAC errors.

– While the OpenSSH implementation only does decoding after

the MAC has been checked.

AfricaCrypt 2010 39

Limitations of [BKN02]

• The model assumes that plaintexts and ciphertexts are

“atomic”.

– All oracle queries in the model involve complete plaintexts or

ciphertexts.

– But the attacks exploit the ability to deliver ciphertexts one

block (or even one byte!) at a time and observe behaviour.

• For example, distinguishing the wait state from a MAC failure.

• The model does not allow for plaintext-dependent

decryption.

– The packet length field never appears in the model.

– But implementations must make use of this field during the

decryption process.

– And, as we‟ve seen, the manner in which this field is treated is

critical for security.

AfricaCrypt 2010 40

A New Security Analysis of SSH

• In [PW10], we:

– Develop a new security model addressing limitations

of the model used in [BKN02]

• LOR-BSF-CCA security;

– Build an accurate description of SSH-CTR as

specified in RFCs and implemented in OpenSSH;

– Prove the security of this description of SSH-CTR in

our new model.

AfricaCrypt 2010 41

A New Security Analysis of SSH

• Our model extends the model from [BKN02]:

– Attacker has access to stateful LoR encryption

oracle and stateful decryption oracle.

– Byte-by-byte delivery of ciphertexts to decryption

oracle, and buffering of any as-yet-unprocessed

ciphertext bytes.

– Adversary can advance oracles to arbitrary states by

submitting output of encryption oracle to decryption

oracle (“in-sync queries”).

– Adversary wins game if he can guess the hidden bit

b of the encryption oracle.

AfricaCrypt 2010 42

A New Security Analysis of SSH

• Our model does not include:

– Byte-by-byte delivery of plaintexts to encryption

oracle.

• Because (Open)SSH is not implemented this way, though

the model and proofs can be adapted to handle it.

– Confidentiality of the packet length field.

• Because it is easy to show that it is impossible to provide

this in practice in a reasonable attack model.

• Still, the model is powerful enough to capture

the attacks of [APW09].

AfricaCrypt 2010 43

A New Security Analysis of SSH

• Our description of SSH-CTR involves:

– Accurate modelling of errors, based on specification

in RFCs and „C‟ source code for OpenSSH.

• Errors from length sanity checking.

• Errors from MAC verification failure.

• Errors from parsing failures during decoding.

• Session teardown in event of any error.

– Use of the packet length field from plaintext to

determine the amount of ciphertext required before

the MAC check is performed.

• Plaintext-dependent decryption.

AfricaCrypt 2010 44

Modelling the Encryption Algorithm

Algorithm E-SSH-CTRKe,Kt (m)

if ste = fail then

return fail

(me,mt) = encode(m)

if me = fail then

ste = fail

return fail

else

c = E-CTRKe(me) \\ counter mode encryption

tau = TKt(mt) \\ MAC computation

return c || tau

end if

AfricaCrypt 2010 45

Modelling the Decryption Algorithm

Algorithm D-SSH-CTRKe,Kt (c)

if std = fail then

return fail

end if

{Stage 1}

cbuff = cbuff || c

{Stage 2}

if me = empty and |cbuff| >= L then

Parse cbuff as c’||A (where |c’| = L)

me[1] = D-CTRKe (c’)

LF = len(me[1]) \\ len checking

if LF = failL then

std = fail

return failL
else

need = 4 + LF + maclen

end if

end if

{Stage 3}

if |cbuff| >= L then

if |cbuff| >= need then

Parse cbuff as c[1…n] || tau || B,

where |c[1…n] || tau| = need,

and |tau| = maclen

me[2…n] = D-CTRKe (c[2…n]) \\ CTR mode

me = me[1] || me[2…n]

mt = SN || me

v = VKt (mt, tau) \\ MAC checking

if v = 0 then \\ MAC failure

std = fail

return failA
else

m = decode(me) \\ decoding plaintext

me = empty; cbuff = B

return m

end if

end if

end if

AfricaCrypt 2010 46

Main Security Result

Theorem: SSH-CTR is IND-BSF-CCA secure

under the assumptions that:

– F, the function family used to construct CTR mode is

pseudo-random;

– The MAC scheme is strongly unforgeable;

– The MAC tagging algorithm is pseudo-random;

– Minimal requirements on the length checking

function len are met.

• The theorem can be made concrete.

– The advantage of any IND-BSF-CCA adversary is meaningfully

related to advantages of adversaries against F and the MAC.

– Good for practice!

AfricaCrypt 2010 47

Outline of Proof

• Broad outline is similar to proofs in [BKN02], but with

complications because of the need to handle

decryption queries and length checking.

• Reduce in first step to “security against LOR-LL-CPA

adversary” + “security against ciphertext forgery”.

– LL = length leakage – usual CPA adversary but given an extra

length oracle.

• Security against LOR-LL-CPA adversary then reduces

to pseudo-randomness of F and of MAC tags.

• Security against ciphertext forgery reduces to strong

unforgeability of MAC scheme.

AfricaCrypt 2010 48

What Does the Proof Mean?

• The model is rich enough to encompass usual LOR-

CCA attacker, as well as attacks of [APW09].

• The model includes all “failure modes” of SSH-CTR (as

implemented in OpenSSH BPP).

– So cryptanalysis based on error side-channels is covered.

• But:

– Timing side-channels are not covered.

– The model does not include anything “outside” the BPP.

– The proof is specific to the OpenSSH implementation of SSH-

CTR.

– Completeness of model is guaranteed only by manual code

inspection.

AfricaCrypt 2010 49

Introduction to SSH

Concluding Remarks

Security Proofs for SSH

Breaking SSH

A New Security Analysis of SSH

AfricaCrypt 2010 50

Concluding Remarks

• We have given an overview of recent attacks

against the SSH BPP and how they illustrate

limitations of security analysis of [BKN02].

• We have motivated the introduction of a new

security model for SSH.

• We have sketched how to prove SSH-CTR

secure in this new model.

– With an accurate description of SSH-CTR based on

RFCs and OpenSSH source code.

AfricaCrypt 2010 51

The Theory/Practice Disconnect

• Theory has long suggested that encrypt-and-MAC
constructions are a bad idea in general.

• Yet SSH uses it and we are probably stuck with the
current SSH BPP design for many years to come.

• What useful, accessible theory was available for the SSH
BPP designers to draw upon in the late 1990s?

• How useful is today‟s theory we can find such a simple
attack just outside the model?

• Incorporating all the security-relevant details of the
implementation was very hard work using our current
analysis tools.

• We need better theory, better tools, and a better
understanding of how to apply the theory to practice.

AfricaCrypt 2010 52

Further Reading

[APW09]: Albrecht, Paterson and Watson, Plaintext-recovery

attacks against SSH, IEEE S&P 2009.

[BKN02]: Bellare, Kohno and Namprempre, Breaking and provably

repairing the SSH authenticated encryption scheme: A case study

of the encode-then-encrypt-and-MAC paradigm, ACM-CCS, 2002.

[D02]: Dai, An Attack Against SSH2 Protocol, unpublished, 2002.

[PW10]: Paterson and Watson, Plaintext-Dependent Decryption: A

Formal Security Treatment of SSH-CTR, Eurocrypt 2010.

