

2

• You are now away for Africacrypt.

• You want to forward your incoming emails to
your secretary.

• You give your private key to your secretary?

• You deploy your private key on your machine?

3

Alice

A->B

Bob

I want Bob to
decrypt (and
act) for me

4

• Encrypted email forwarding
– Blaze, Bleumer, Strauss 98

• Law enforcement
– Ivan, Dodis 03

• Digital rights management
– Apple iTunes

• Distributed file storage systems

• Outsourced filtering of encrypted spam
– Ateniese, Fu, Green, Hohenberger 06

5

• “Single-hop”

• Unidirectional

– A  B does not mean B  A

• Collusion-resistance

– Basic: proxy and delegatee can’t recover the private
key of delegator “in full”

– This talk: can’t compromise the security of
delegator in “any meaningful way”

6

Schemes Uni/Bi
dir.

Security RO-free Pairing
-free

Collusion
resistant

[AFGH06] -> CPA   

[HRSV07] -> CCA   

[CH07] <-> CCA   

[LV08] -> RCCA   

[LV08-T] -> CPA   

[DWLC08] <-> CCA   

[SC09] -> CCA?   

[ABH09] -> CPA   

Ours -> CCA   

7

• Unidirectional rki ->j = g^(skj / ski)

• Libert-Vergnaud 08: e(rki ->j, (pki)
r) = e(g, pkj)

r

– Use (1 / skj) to get the padding e(g, g)r

• Use pairing e() for ciphertext validity
verification
• only transforms valid ciphertext for CCA concern

8

• Definition:
– A new security model for PRE built from the “token-

controlled encryption” approach

• Attack:
– CCA of a PRE scheme by Shao-Cao in PKC ’09

– Can fix it, but still relatively inefficient

– Decisional Diffie-Hellman over Z*N2

• Construction:
– PRE realized without pairing

– Efficient PRE with simple design

9

• KeyGen(), Enc(pk, m), Dec(sk, C)

• rki -> j ReKeyGen(ski, pkj)

• Cj ReEnc(rki -> j, Ci)

10

• Knowledge of Secret Key assumption
– As in [CH07, LV08]

• Random oracle

• CCA instead of RCCA
– E.g., *LV08+ tolerates a “harmless mauling” of the

challenge ciphertext

– At the expense of additional constraint on the re-
encryption key that can be compromised

• Collusion: returns a combination of the delegator,
delegatee and proxy’s secrets

11

• Setup generates lists PKgood (honest user’s keys)
and Pkcorr (corrupted)

– Gives all PKs and SKcorr to adversary Adv

• Decryption oracle: ODec

• Transformation Key oracle: OReK

• Re-Encryption oracle: OReE

• Adv chooses m0, m1, pki* in PKgood

12

• Challenge C* = Enc(pki*, mb)

• Adv can’t re-encrypt the challenge to a
compromised user pkj in Pkcorr

• No OReK(pki*, pkj)

• If Adv issued OReE(pki, Ci, pkj)

• Or if Adv issued ODec(pki, Ci)

• (pki,Ci) can’t be derived from (pki*,C*)

13

• If Adv has issued OReE(pk, pk’, C) and obtained
C’, then (pk’, C’) is a derivative of (pk, C)

• If Adv has issued OReK(pk, pk’) and obtained rk,
then (pk’, ReEnc(rk, C)) is a derivative of (pk, C)

• Adopted from RCCA-based definition

14

• C* = ReEnc(rki’->i*, Enc(pki’, mb))

– Adv can also specify the delegator pki’

• ODec(pki*, C*) is not allowed

• If pki’ in Pkcorr, would not return rki’->i*

• On the other hand, if Adv got rki’->i*, Adv cannot
choose pki’ as the delegator

• This is weaker than *LV08+, but …

15

• C* = ReEnc(rki’->i*, Enc(pki’, mb))

• Both ski’ (delegator) and rki’->i* (proxy) are
compromised.

• Adv may have obtained the original ciphertext
Enc(pki’, mb) and use ski’ to decrypt trivially

• What if they were initially honest and erased the
original ciphertext?

• Adv may capture the ciphertext by itself

16

• We only talked about transformed ciphertext
• Single-hop: possible to create a ciphertext which is not

further transformable, via Enc’()
• In *LV08+, Enc’() ≅ ReEnc(Enc())

– a reason is that the ciphertext is re-randomizable
– also explains why it is at most RCCA secure

• In our scheme, ReEnc() is deterministic
– but Enc’() exists, also nontransformable

• Security definition for Enc’() is much simpler
– usual CCA, Adv can get all re-encryption key
– covers “master secret security” – recover sk in full

17

• ReKeyGen selects a random token to hide (a form
of) the delegator’s secret

• This token is encrypted under the delegatee’s
public key, by a slightly different way

• Implicitly used in Shao-Cao 09 and 2 ID-based
schemes (P.S. but not collusion resistant)

18

• Re-encryption (not necessary of the challenge
ciphertext) generates a cipherext which contains
a part with partial information about the token

• No validity check of this part in decryption
algorithm of Shao-Cao

• Possible fix requires a validity check, which
means 1 more exponentiation

19

• ElGamal encryption
– with Fujisaki-Okamoto (FO) transformation and Schnorr

signature for ciphertext integrity

• Re-encryption is done using a random token to hide
the secret key

• Each user has 2 secret keys
– Require both to decrypt an original ciphertext/

to create a transformation key

– Encryption of random token in transformation key just
requires one secret key to decrypt

20

• ski = (xi,1, xi,2)

• (pki,1 pki,2) = (g^(xi,1),g^(xi,2))

• Let pki = pki,2 * pki,1 ^(H4(pki,2))

• FO: r = H1(m, w), w <- $

• ElGamal: E = pkr, F = H2(gr) ⊕ (m || w)

• Schnorr: D = (pk)u, s = u + rH3(D,E,F)

21

• E = pkr, F = H2(gr) ⊕ (m || w)

• D = (pk)u, s = u + r * H3(D, E, F)

• Check if pks = D * E^(H3(D, E, F))

• Define sk = xi,1 H4(pki,2)+ xi,2

• (m’ || w’) <- F ⊕ H2(E1/sk)

• Return m’ if E = (pk)^(H1(m’, w’))

22

• Pick a random token h <- $

• FO: v = H1(h, π), π <- $

• ElGamal: V = pkj,2
v, W = H2(gv)⊕(h||π)

• rkij = (h/ski, V, W)

• ReEnc sees if pki
s = D * E^(H3(D,E,F))

• Output (E’ = E^(h/ski) = grh, F, V, W)

23

• E’ = grh, F = H2(gr) ⊕ (m || w)

• V = pkj,2
v , W = H2(gv) ⊕ (h || π)

• Enc’ (for nontransformable ctxt) picks h

• To decrypt, recover (h || π), check it; recover gr

and hence (m || w), check it

24

• rk has h / (xi,1 H4(pki,2)+ xi,2)

• Even with h, value of xi,2 is unknown

– “Token” in rk is protected by x2

– “Chain collusion” attack is not possible

25

Shao-Cao 09 Ours

Encrypt 5texp (in ZN2) 3texp (in G)

ReEncrypt 4texp (in ZN2) 2.5texp (in G)

Decrypt (Original) 5texp (in ZN2) 3.5texp (in G)

Decrypt (Transformed) 5texp (in ZN2) 4texp (in G)

Overhead (Original) 3|(NX)2| + |m| + 2k 2|G| + |Zq| + k

Overhead (Transformed) 3|(NX)2| + 2|(NY)2| + k 2|G| + 2k

Assumption DDH over ZN2 CDH over G

Remark Decryption needs pkX N/A

26

• Unidirectional PRE schemes use pairings

• Except Shao and Cao in PKC ‘09

• We showed that their CCA proof is flawed

• We present an efficient CCA-secure unidirectional PRE
scheme without pairings

• Efficiency gain and CCA security may come from our
(reasonable) weakening of the adversary model

• “token” approach has been used implicitly

• but the model was never adjusted to match

27

• Model

• Attack

• Construction

• Better efficiency (albeit the proof assumes random oracle)

• More standard complexity assumption

28

• Pairing-free CCA-secure scheme with no weakening
of security model

• Proxy re-cryptography without pairing

• conditional proxy re-encryption

• proxy re-signatures, etc

29

• Questions/comments are welcome.

• schow@cs.nyu.edu

30

• A collusion of a delegatee of X (say Y) and his
proxy can recover a weak secret key of X, wskX

• Re-encrypting X’s ciphertext to other delegatee
retains most part of the original one

• In particular, it is decryptable by wskX

• Z is the target, X is the delegator, and
compromise Y and the proxy of X for Y

